| 1 | 2 | ||||||
| 1) Double yarn imperfections = S.Y.Imperfections x 0.2. | |||||||
| Single yarn imp x 0.17 | |||||||
| THE HANK BOOK OF STATASTICAL | |||||||
| AND PRODUCTIVITY FOURMULAS | 2 ) Single yarn strength in grams = | ||||||
| PART - 1 | Strength inlbs/ 0.276 | ||||||
| Contents :- | 3 ) RKM = C.S.P / 176 or C.S.P X 0.6/100 | ||||||
| > The machine related faults & remidies | |||||||
| > Statastical & prodectivity fourmulas | 4) 1 Deg C = 32 X F X 9/2 | ||||||
| > Process problems & remidies | |||||||
| > The compleat source of yarn faults classifications | 5) Traveller speed = ( Meters/Sec ) | ||||||
| > The orgin of yarn faults and remedies | 3.14 x Ring dia X spdl speed | ||||||
| ------------------------------------- | |||||||
| 60 x 1000 | |||||||
| Prepared By : | 6) No. of winders = | ||||||
| D.NAGESWARARAO. | Production/ Frame | ||||||
| Quality control officer | ------------------------ | ||||||
| M/s I.C.M. LIMITED | Production/ Winder | ||||||
| GUNTUR ( Dt) | |||||||
| 3 | 4 | ||||||
| 7) No. of drums allotment = | 11) Double yarn C.S.P = S.y C.S.P X 1.25 | ||||||
| 4.8 x length of yarn per bobbin mts +1 | 12) Double yarn U% = Single yarn u% x 0.7 | ||||||
| ----------------------------------------------------- | 13) Cop content = | ||||||
| winding speed mpm | 3.8 x ( Ring dia2)x lift in Inches | ||||||
| 14) Denier = Mic x 0.354 | |||||||
| 8 ) Machine effciancy = | 15) Mic = Denier x 2.82 | ||||||
| 4500 x length of yarn in mts | |||||||
| ------------------------------------------- | 16) STD. FRS = Caliculated speed | ||||||
| Winding speed x no. of drums | STD.Speed/ Act. Tpi x Fr. Dia x 3.142 | ||||||
| 9 ) Ring traveller cut in groving = | |||||||
| 17) ACT. FRS = Act. SPEED | |||||||
| 494 x lea strength in lbs x 10 | ------------------- | ||||||
| -------------------------------------------- | Act. TPI X Fr. Dia X 3.142 | ||||||
| Ring dia in mm x Spdl speed | 18) No. of coils/ inch ( For course count ) | ||||||
| T.M X 10 SQR H.K | |||||||
| 10 ) Tension weight in Grams = | 19) No. of coils/inch ( Fine HK ) | ||||||
| Lea strength in lbs x 0.118 | T.M X 13 SQR H.K | ||||||
| 5 | 6 | ||||||
| 20) Sides allotment in ring frame = | 23) Fiber mturity ratio : | ||||||
| Normal fibers - Dead fibers | |||||||
| b = 125/n - 30/sqr c - 1 | ----------------------------------------- x 0.7 | ||||||
| b = end breaks/ 100 spdl/ hr | 200 | ||||||
| c = count ne | |||||||
| n = no. of sides assinged for a tinter | 24) Maturity co - effciant = | ||||||
| 21 ) Relative humidity = | N +0.75+0.45D/ 100 | ||||||
| Actual Vapaur pressure | N = Normal fibers | ||||||
| --------------------------------- | x 100 | T = Thin walled or half mature | |||||
| Standard vapour pressure | D = Dead fibers | ||||||
| 22) Correction of yarn count for Humidity | 24) Fiber diameter in microns | ||||||
| changes ( Corrected count Ne) | Sqr of 3.14 x Denier/specific gravity | ||||||
| = n (100 +b Ra ) | |||||||
| --------------------- | 25) Drawing delevery speed mts/min | ||||||
| 100 + Rs | = 3.14 x D X N/1000 | ||||||
| N = Actual count | |||||||
| Ra = Actual regain | |||||||
| Rs = Standard Regain | |||||||
| 7 | 8 | ||||||
| 26) Maturity co - effciant | 28) R/F Production/ spindle/ 8 hrs = | ||||||
| SPDL speed x 60 x 8 | |||||||
| N + 0.75 +b 0.45D | -------------------------------- x eff | ||||||
| ---------------------- | 840 x 36 x tpi x ct x 2.204 | ||||||
| 100 | |||||||
| 28) Expected hanks/ shift/ 8 hrs = | |||||||
| N = Normal fiber | |||||||
| T = Thin walled or half walled mature | Spdl speed/ tpi / 63 x eff | ||||||
| D = Dead fiber | |||||||
| 29) Fourmula to find out bobbin building | |||||||
| 27) Fiber diameter in microns | Total turns on bobbin/ spdl speed | ||||||
| sqr of 3.14 x Denier/ Specific gravity | |||||||
| Total turns on bobbin = | |||||||
| Delevery speed in mts/ Min ( Drawing ) | Length in inches of yarn in bobbin x TPI | ||||||
| = 3.14 x D X N / 1000 | Length in inches in bobbin = | ||||||
| Wt of the material in lbs x 840 x 36 | |||||||
| 9 | 10 | ||||||
| 32) Twist contraction % = | 36 Total mechanical draft = MD X BD | ||||||
| ( 2.64 x T.M ) - 4.82 | 24.22 X 1.46 | ||||||
| 33) Avg, Count | 37) Winding length /cam revaluations | ||||||
| ( C1W1 +C2W2 +C3W3 ) | 1 x 121 x 73 x 69 x 26 x 3.14 x 27 | ||||||
| -------------------------------- | ------------------------------------------------- | ||||||
| W1 +Bw2 | W1 + Bw2 +W3 | 2 x 40 x 102 x 29 x 1000 | |||||
| = 5.67 mts | |||||||
| C1, C2, C3 are the counts | 38) Count delevered at front roller nip | ||||||
| W1 ,W2,W3 Production/shift | Total draft x Roving hank | ||||||
| 39) Yarn cv% = | |||||||
| 34) IFTPI Changed then grams/ Spindle | CV% +/- 2CV%/SQR OF N | ||||||
| Given production x curent TPI/EXPT. TPI | 40) Yarn diameter = 0.95/ sqr of count | ||||||
| 35) If spindle RPM Changed then grams/spdl | 41) Coils/ inch = 0.50x sqr of ct x 25.4 | ||||||
| = Given production x expected RPM | 42) Yarn relisation = | ||||||
| --------------------------------------------- | ( 95 -T) ( 1 - C/100)3 | ||||||
| Running spindle RPM | |||||||
| 11 | 12 | ||||||
| 43) To find out the average Denier in a mixing | 46) Energy cost = | ||||||
| Denier % | Total units /Production in kgs | ||||||
| Ex : 1.5D - 50% | 47) U.K.G = total units lost consumed/ | ||||||
| 8.0D 20 % | Production in kgs | ||||||
| 3.0D 30 % | 48) Linear density of yarn in count systeam | ||||||
| = 50/1.5 +20/8 +30/3 = 45.8 | Ne = 453.6/ 7 x M | ||||||
| 100/45.8 = 2.18 | m = 120 yds | ||||||
| 44) Caliculation of siders% achived siders% | 49) Count in yarn tex = M/100 X 100 | ||||||
| Act. Hanks ( 100 - cal.w% +ach idles | |||||||
| ------------------------------------------------------ | 50) Dia correction facture = | ||||||
| STD Hanks x (100 - Stdw% +STD | Old correction facture x Normal dia | ||||||
| IDLES | -------------------------------------------- | ||||||
| Actual dia | |||||||
| 45) Twist variation % = | 51) Centinutons to grams | ||||||
| Twist variation/Intial tpi x 100 | CN X 2.5 = GRAMS | ||||||
| 13 | 14 | ||||||
| 51) T.F.O Producton/ spindle/ 8 hrs = | 55) Take up roller speed = | ||||||
| 0.204 x Spindle speed/TPI | |||||||
| Spdl speed x 60 x 8 x 2 | |||||||
| ----------------------------------------------- | 56) Cam speed = Take up roller speed x 27 | ||||||
| TPI X 36 X 840 X Ct x 2.204 | ------------------------------------------- | ||||||
| 100 x cam wheel x 50 | |||||||
| 52) No. of Twists = Spdl speed rpm x 2/ | |||||||
| Yarn speed in mpm | 57) Pre take up roller speed = | ||||||
| Take up roller speed x 72/28 x Drive wheel | |||||||
| = 15168.6 x d/D | -------------------------------------------------------- | ||||||
| Driven wheel | |||||||
| 53) Delevery speed = Spdl speed/ | |||||||
| TPI X 39.37 X 2 | 58) Over feed ration = 72/28 x Driver / Driven x 51 | ||||||
| /77- 1 x 100 | |||||||
| 54) Lease Angle ( Tan ) | |||||||
| 2 x Traverse length x takeup roll Speed | 59) Density of take up package = | ||||||
| ------------------------------------------------------- | |||||||
| 3.14 x Take up roller dia x Cam speed | |||||||
| 15 | 16 | ||||||
| 60) Density of take up package = | 65) Total imperfections = 0.170 x S.Y Imperfections | ||||||
| Package in grams x 3.14 | |||||||
| ------------------------------------- | 66) Double yarn uster = Single yarn uster | ||||||
| 12 x H X ( D2 X D X d2) | -------------------------- | ||||||
| Sqr fo No. of plyes | |||||||
| H = Length in traverse | |||||||
| D = Bigger dia of delevery package | LF 1400A 4/4 DRAFTING CALICULATIONS | ||||||
| d = Smaller dia of delevery package | Dia 27 mm | ||||||
| 61) Power consumption wats/ Hr | 67) Creel tension draft = 0.022 x We | ||||||
| 3 x cos tita | |||||||
| 62) 1 unit = 100 Wattts/ Hr | 68) Twist constant = 0.0091426 x G/H X T.W | ||||||
| 1 Unit = 1 kw/ hr | |||||||
| 1 Unit = 745 Watts | 69) Draft constant = 29967.95/ BDCP X CP | ||||||
| 63) Doubling yarn strength = | |||||||
| 2.5 x ring yarn strength | 70) Cone drum end wheel = | ||||||
| 64) Doubling TPI = S.Y TPI X 0.7 | K X D1 X 1.83/ds | ||||||
| 71) Lifter whel = 10.5 x E/F X B1 / sqr of H.K | |||||||
| B1 = 2.8 | |||||||
| 17 | 18 | ||||||
| 71) Tensen wheel = | 77) Draft constant = 29967.95 / BDCP | ||||||
| 4742 x B2 / D.S. X SQR H.K | 78 ) Break drat = 66.818/ BDCP | ||||||
| B2 = 0.58 | 79) Tension wheel = 4742 x B2 X D.S X sqr of H.K | ||||||
| D.S = Bare bobbin dia | |||||||
| 80) Coils per inch for course roving =- | |||||||
| 72) Coils/ inch = For course roving = | |||||||
| TM X 10 ( Hank) 1/2 | TM X 10 ( H.K) 1/2 | ||||||
| For fine = TM X 13 ( HANK) 1/2 | |||||||
| 81) For fine roving = | |||||||
| LF 1400A DRAFTING 4/4 30 MM | |||||||
| TM X 13 ( Hank) 1/2 | |||||||
| 73 ) Creel tension draft = | |||||||
| 0.024 x We ( creel tension wheel) | |||||||
| 74) Twist constant 0.008270 x g/h x Tw | RSB 851 CALICULATIONS | ||||||
| 75) Draft constant = 29967.95 | 82) Creel tension draft = | ||||||
| ------------------- | 0.00694 x w1 ( creel tension wheel) | ||||||
| BDCP X CP | |||||||
| 19 | 20 | ||||||
| 83) Draw of tension = 0.0175 x W3 | 83) Intake tension draft = 0.7398 x w8/w9 | ||||||
| ( Draw of tension pully) | ( W8 +b W9 = 132 Teeth) | ||||||
| 84) Draft = 6.017 x ( Nw2/nw ) | 84) Break draft = draw ot tension = | ||||||
| 85) NW1 = Required hank | 0.0175 X W3 ( Draw of tension pully) | ||||||
| -------------------- | 85) Draft = 6.017 x NW2/NW1 | ||||||
| Present hank x present draft | |||||||
| 86) NW2 = Required hank | LR 6/S CALICULATIONS | ||||||
| --------------------- | Spindle wharve = 19 mm 18.5 MM | ||||||
| Present hk x present NW2 | Twist constant = 27.44 x d/c x b/a 28.15 | ||||||
| Draft constant = 10.519x H/G | |||||||
| 87) B90 = Act. Hk - Std hk | Winding leangth = 3.11 x E/F | ||||||
| ------------------------ | --------------------------- x 1600 | Break draft constant = 67.09/BDCP 67.09 | |||||
| Act. Hk | |||||||
| A +B = 165 C+D = 137 E+F = 113 | |||||||
| 88) A % n - 1 = (n - 1) - n /n x 100 | G+H = 130 TO 175 | ||||||
| n +1 = (n+1) - n / n x 100 | |||||||
| 21 | 22 | ||||||
| WINDING CALICULATIONS | 96) Production % = Act. Prod | ||||||
| ----------------- x 100 | |||||||
| Production/Drum / 8hrs | Std. Production | ||||||
| 97) Overall % = P% X U%/100 | |||||||
| MPM X 1.0936 X 60 X8 | |||||||
| ----------------------------------------------- | 98) Tension weight in grams = | ||||||
| 840 XX COUNT X 2.204 | 1.8 +b(0.571x elongation lea str/kg) | ||||||
| 0.2835 X MPM/ COUNT | Yarn quality facture = | ||||||
| Cleaning effciancy/ Knot facture | |||||||
| 94) Length correction factor = | |||||||
| 99) Knot facture = Total number of slub catchers | |||||||
| STD Length / Act. Length x present | related yarn breaks in | ||||||
| LCF | given length | ||||||
| ----------------------------------------------------- | |||||||
| 95) Utilisation % = | Total number of objct. Yarn faults | ||||||
| removed by S.C from same length | |||||||
| Worked hrs/Alloted hrs x Worked dr | Bobbin running time = | ||||||
| -------------------------------------------------- | Avg length in meters/ Speed in mpm | ||||||
| Alloted drums x 100 | |||||||
| 23 | 24 | ||||||
| AUTOCONER CALICULATIONS | 103) RTI = Ratio of retair ( the average number | ||||||
| of breaks/ bobbin | |||||||
| 100) S.E.F % = ( Spindle effciancy ) | No. of sucsess ful splicer - no. of bobbin | ||||||
| change | |||||||
| Winding time ( WDTM) / Shift | |||||||
| ------------------------------------- x 100 | x 100 | 104) MIS = Miss splicing% = | |||||
| Run time ( RTM) - CBF alaram down time | |||||||
| No. of doffs (NDOP) | |||||||
| ---------------------------- x 100 | |||||||
| 101) A.E.F.% ( Actual effciancy) | No. of bobbin change | ||||||
| 105) LW% = Ratio fo yellow buttion% | |||||||
| Winding time / Shift | = No. of times yellow buttion activated | ||||||
| ------------------------------ x 100 | -----------------------------------------------------x 100 | ||||||
| SFTM ( shift time ) | No. of splicings | ||||||
| 102) JOIY% = Avg. no. of splicings/ 1000 | 106) RTM = Runtime minutes | ||||||
| miles of yarn | |||||||
| No. of splicings | |||||||
| ----------------------- x 100 | |||||||
| Yarn winding length/ Shift | |||||||
| 25 | 26 | ||||||
| 106) SBC % = Ratio of bobbin change % | 111) SDTM = Splice down time for caser | ||||||
| = Run time - Winding time | |||||||
| = No. of bobbins changes | 112) AC/Y = Avg. no. of NEPcutts/100000 mts | ||||||
| -------------------------------- | |||||||
| No. of bobbin changes +bNo.of yarn ct | No. of yarn clearers defective cutts | ||||||
| ------------------------------------------------- x 100000 | |||||||
| 107) SCC% = ( Ratio of yarn clearer cutts) | Winding length | ||||||
| 113) SC/Y = Avg. no. of slub cutts /100000 mts | |||||||
| Additional cutts ratio | |||||||
| --------------------------- x 100 | = No. of yarn clearence | ||||||
| No. of bobbin changes +no. of yarn clg cuts | Diffective cutts - Wdg length | ||||||
| ------------------------------------ x 100000 | |||||||
| 108) SPCY = SPDL CUTS/LAC MTS | Shift ( all yarn) | ||||||
| CCLY = CLEARER CUTS/LAC METERS | |||||||
| NYCA = No. of yarn ct alaram | 114) LC/Y = Avg. no. of long thick placess cutts/ | ||||||
| 100000 mts | |||||||
| 109) NADM = No. of miss auto doffing | 115) No. of T defective clearer = | ||||||
| Yarn alaram cutts | |||||||
| 110) AC/Y Avg . No of nep cutts/10000mts | ------------------------- x 100000 | ||||||
| Winding length/ shift | |||||||
| 27 | 28 | ||||||
| 117) Drawing production/Del = | 120) D/F Production/ Del/ 8 hrs = | ||||||
| 0.625 x MPM X EFF/100 | |||||||
| 0.069 x sliver hk ( 35 mm frd ) | |||||||
| 0.053 x Sliver hk ( 27 mm frd) | 121) NO. Of fibers in sliver cross section = | ||||||
| 0.050 x Sliver hk ( 25.44 mm frd) | 15000/ hank x mic | ||||||
| 118) Riquired draft in ring spinning | 122) Simplex & Spinning productin/spdl/ 8 hrs | ||||||
| = 7.2 x Spdl speed x Mc eff | |||||||
| Count 18s to 44 4.5 sqr count | ------------------------------------ | ||||||
| Count 50s to 70 4.0 sqr count | TPI X Roving hk x 100000 | ||||||
| Count 80s to 100 3.3 sqr count | 123) Doubling prod = 7.2 x spdl speed | ||||||
| ----------------------- x eff | |||||||
| 119) Actual hank = | tpi x resultan count | ||||||
| 8.33 x no. of yards | |||||||
| -------------------------- | 124) Blow room production = | ||||||
| 15.432 x Avg.wt in grams | |||||||
| 8.9 x S x d S = lap roller speed | |||||||
| ( i.e lenear density in high production cards) | ------------------- D = Dia of lap roller | ||||||
| 1000 x H H = Hank of lap | |||||||
| 29 | 30 | ||||||
| CONVERSION FACTURES | 126) Cone winding production = | ||||||
| 125) | 0.2835 x S/C = KGS | ||||||
| 1 YARD = 36 INCHES | S = WINDING SPEED C = COUNT | ||||||
| 1 Hank = 840 yards | |||||||
| 1 Meter = 1.094 yards | 127) Conversions for hanks to kilograms = | ||||||
| 1 Kg = 2.204 lbs | Hanks x 0.4536 | ||||||
| 1 Inch = 2.54 cms | ------------------------------------------------- | ||||||
| 1 inch = 25.4 mm | Sliver / roving/ count | ||||||
| 1 Lb = 453.4 grams | 128) Carding production = 0.855 X S/H | ||||||
| 1 Gram = 15.4 grains | S = Doffer speed | ||||||
| 1 Yard = 3 feets | H = Hank of sliver | ||||||
| 1 Foot = 12 inches | Tension draft = 1.4 | ||||||
| 1 Lb - 16 ouncess | |||||||
| 1 Ounce = 28.34 grains | 129) Linear density in high production card sliver | ||||||
| 1 Yard = 0.91 meters | = | ||||||
| 1 Meter = 39.37 inchess | Actual hank = | ||||||
| 8.33 x no. of yards | |||||||
| ------------------------------- | |||||||
| 15.432 x Avg weight in grams | |||||||
| 31 | 32 | ||||||
| 127) Time to build a full bobbin = | 132) Standard nep count = | ||||||
| (Nep/ board x H.K X Card width cms) | |||||||
| ( Length of yarn on bobbin ) | |||||||
| ---------------------------------- | 133) Can content in drawing = | ||||||
| (Length delevery per hour) | 1.5 x Hight x Dia 2/ 1000 | ||||||
| 128) Yarn breaking strength = | 134) Trumpet bore size = | ||||||
| For karded yarn = 2000/ count | 0.22 x sqr of grain per yard of sliver | ||||||
| For combed yarn = 2250/ count | |||||||
| 135) Twist contraction% = | |||||||
| 129) Density of yarn package = | (2.64 x T.M ) - 4.82 | ||||||
| Net weight on yarn package | |||||||
| -------------------------------------- | 136) Spinning limit = | ||||||
| Valume of yarn package | 5315 | ||||||
| ---------------------------------------------------------------- | |||||||
| 130 ) Tape width = | Diameter of fiber x Actual fiber/ fross section | ||||||
| Face width of spindle wharve - 4 mm | |||||||
| 137) Uniformity ration = | |||||||
| 131) A/C Production = 0.283 x mts/ min/Ct | Mean fiber length/ upper hald mean lengt | ||||||
| x 100 | |||||||
| 33 | 34 | ||||||
| 135) expected U% = | STATASTICAL FOURMULAS | ||||||
| 100/ sqr of N | |||||||
| N = No. of fibers in cross section | 140) Q95% = | ||||||
| K = T X S.D./ sqr of N | |||||||
| N = Yarn denier/ Fiber denier | T = T value | ||||||
| Yarn denier = 5315/ count | SD = Standard deviation | ||||||
| N = No. of samples | |||||||
| 136) Break draft = ss back roller/ ss of mid | |||||||
| 141) T Value = | |||||||
| 137) Main draft = ss of first roll./ss of mid roll | X1 - X2 sqr of N | ||||||
| ----------------------- | |||||||
| 138) Total draft = ss of delevery roll / | sqr of SD1 +SD2 | ||||||
| ss of feed roller | T value more than 2.67 it is statastically | ||||||
| 139) Comber production/day/ machine | siginificant | ||||||
| 0.0384 / 1000 x LSF( 100 - W) | X1 X2 = Mean values | ||||||
| N = Number tests | |||||||
| L = Lap weight | SD1 AND SD2 = Standard deviations | ||||||
| S = Nip/Minits | |||||||
| F = Feed/ Nip | |||||||
| 35 | 36 | ||||||
| STATASTICAL FOURMULAS | 144) Che sequare test = | ||||||
| ( A +B )/ (A - B) 2 = > 4.0 | |||||||
| 142) F Test :- | |||||||
| Two cv values are to be compared | 145) Power consumption = | ||||||
| is to be conduct | HP X 0.746 X 3 SHIFTS X 8 | ||||||
| --------------------------------------- x eff | |||||||
| F = S1 squar | Consumption of production/ mc | ||||||
| --------------- | 146) T.F.O Production/ day / machine = | ||||||
| S2 squar | |||||||
| F is always greater than 1 | 14.4 x Spdl rpm x eff x No. of drums x 3 | ||||||
| ------------------------------------------------------- | |||||||
| 143) Degree of freedom Caliculation per | TPI X COUNT X 1000 | ||||||
| T test = | |||||||
| The diffrence between variator drive and | |||||||
| No. of samples = 2 | inverter drive = | ||||||
| No. of readings per each test = 20 | Variator type machine mainly in spg. Motor | ||||||
| Degree of freedom = 2(20-2) = 38 | rpm is fixed | ||||||
| You can see that T value chart at 38 | Inverter drive in this principle inverter varie the | ||||||
| degree of freedom | freequancy if frequancy is increased | ||||||
| N = 120 X f/p | |||||||
| 37 | 38 | ||||||
| STATASTICAL FOURMULAS | 146) Ex A mill having 150 breaks/ 1000spdl | ||||||
| per hr in 60s count | |||||||
| 145) The hank of the drawing sliver for the | After change of mixing the level of | ||||||
| department as whole would be | breakage 220 per 1000spdl/ hr | ||||||
| Has the change of mixing increased the | |||||||
| = 0.145 +/- 3SD/sqr of N | breakege rate ? | ||||||
| +/- 3 X 0.00145/sqr of 8 | At present O = 220 E = 150 | ||||||
| = 0.145 +/- 0.0016 | |||||||
| Range = 01434 and 0.1466 | X2 = ( 220 - 150)2/150 = 4900/150 | ||||||
| The hank 0.145 is statastically different for | = 32.7 | ||||||
| the nominal hank 0.140 | I degree of freedom = 3.87 it is statasti | ||||||
| cally significant | |||||||
| APPLICATION OF X2( Che Squar ) Method | |||||||
| 146) X2 Defined as ( O - E)2 /E | |||||||
| O & E are the observed and expected | |||||||
| values | |||||||
| 39 | 40 | ||||||
| STATASTICAL FOURMULAS | STATASTICAL FOURMULAS | ||||||
| 148) Application of F test | 149) SNAP STUDY : | ||||||
| Card hank cv% = 4.0 | A round inside the department to list | ||||||
| Taking some precations cv% reduced | the number of machines stopped due to | ||||||
| 3.5% Card hk 0.200 No. of readings | various causes is known as snap study | ||||||
| = 40 is it statastically significant | |||||||
| or Not ? | S = 1/100 X sqr of P(100-P)/sqr of N X rounds | ||||||
| SD1 = CV1 X Mean /100 = 4 x 0.2/100 | |||||||
| = 0.008 | S = SD of the estimate | ||||||
| SD2 = CV2 X Mean/100 = 3.5x0.2/100 | P = Efficancy of the department | ||||||
| = 0.007 | N = No. of machines observed | ||||||
| SD1 sqr/SD2 sqr = 1.31 | S = 1/100 X sqr of 91 x 9/sqr of 30+60 | ||||||
| = 0.67 | |||||||
| The value should be grater than = 1.53 | |||||||
| 41 | 42 | ||||||
| STATASTICAL FOURMULAS | 151) Fiber to yarn relation ship = | ||||||
| 150) | Lea C.S.P = | ||||||
| Department Nature of problem Test to | 165 sqr of FQI +590 - 13C For karded count | ||||||
| Blow room Fiber repture C.D | 152) Lea C.S.P | ||||||
| Cleaning eff% C.D | 165 sqr of FQI +590 -13C (1+W/100) | ||||||
| Neps generation X2 | for combed counts | ||||||
| Carding Fiber repture C.D | |||||||
| Cleaning eff C.D. | Here | ||||||
| Nep generation X2 | |||||||
| Cv% Hank F test | FQI = LSM/F | ||||||
| M/c Stoppage Snap test | L = Mean length | ||||||
| Drawing S.L Hank CV test | S = Fiber bundle strength | ||||||
| S.L. Breaks F test | f = Micronaire value | ||||||
| Cv of SL Hk F test | C= Yarn count | ||||||
| M/c Stoppage Snap test | W = % of comber noil | ||||||
| Simplex Str in roving Analysis of roving | |||||||
| Mean hk of roving CV test | |||||||
| End Breaks X2 TEST | |||||||
| 43 | 44 | ||||||
| 153) Time of build a full bobbin | SNAPSTUDY TEST | ||||||
| Length of yarn on bobbin | |||||||
| ----------------------------------- | A Round inside the department to list the | ||||||
| Length delevered per hr. | no. of machines stopped due to various | ||||||
| 154) Diameter of fiber in microns = | causes is known as snap study | ||||||
| 2000 x (sqr X /Y X 9000) | |||||||
| X = Fiber diameter | > Expected effciancy of snap study = 95 | ||||||
| y = Fiber specific gravity | > Observed efficancy = 91 | ||||||
| > No. of rounds = 31 | |||||||
| 155) Uniformity ration = | > No. of ring frames = 60 | ||||||
| Mean fiber length | |||||||
| ------------------------ x 100 | S = 1/100 X sqr of P(100-P)/sqr of N X Rounds | ||||||
| Upper half mean length | |||||||
| 156) Opend end spinnign TPM = | |||||||
| Delevery speed mpm / Rotor rpm | S = 1/100 X sqr of 91 x 9 | ||||||
| ------------------ = 0.67 | |||||||
| 157) OE Production in kgs/ hr/ Rotor | sqr of 30 x 60 | ||||||
| = Delevery speed mpm x tex x 60xeff | |||||||
| ----------------------------------------------- | |||||||
| 1000 x TPM | |||||||
| 45 | 46 | ||||||
| 163) | MONETARING DATA DETAILS | ||||||
| N = Diameter limit/ Neps | |||||||
| DS = Diameter limit for short faults | |||||||
| LS = Limit for short fault length | Total yarn cutts = Total yarn faults | ||||||
| DL = Diameter limit for long faults | Short off cnt cutts = yarn count deviation | ||||||
| and double yarn | Short count range | ||||||
| LL = Limit for long fault length | |||||||
| -D = Limit of the diameter decreases | Off count cutts = Yarn count deviation cutts | ||||||
| for the faults | |||||||
| -L = Limt for thin placess length | SFI/D Cutts = Surface index | ||||||
| F cutts = Forgin matter cutts | |||||||
| VCV = Varable CV channel | P cutts = Synthatic forgin matter | ||||||
| Ex : | Short cluster cutts = Short faults cluster cutts | ||||||
| Laboratory prcticess where check | Long cluster cutts = Long fault cluster cutts | ||||||
| length of 400 or 1000 meters for CV | F cluster cutts = Forgin matter cluster cutts | ||||||
| determination | VCV Cutts = Cuts resulting from a deviation of the | ||||||
| In vcv the check length of cv can be varied | VCV Value from the mean value | ||||||
| contionously between 1 and 50 meters | |||||||
| Specific detection fo diameter variance | D Bunch cutts = Delayed cutts caused by a | ||||||
| Bunch of similar running faults | |||||||
| 47 | 48 | ||||||
| mixing | NEP AND FIBER DAMAGES | ||||||
| Longer the finer cotton with high trash content | Carding | ||||||
| are more prone to neppiness than shorter | 1. Damaged and worn wire points and depositi | ||||||
| and courser ones very fine and long cottns | on of waxy material on the wire surface | ||||||
| are found to break during processing and | are potencial cause of nesp | ||||||
| thus create the nep formation | |||||||
| 2. Higher Lickren speeds remove the more | |||||||
| Micronaire value greater than 3.5 and | motes and fly waste thus reduce the seed | ||||||
| maturity co effciant about 0.8 are | cot neps | ||||||
| likely to reduce nep formation | 3. Higher cylinder speed of the order of 460 rpm | ||||||
| combined with high flats speed 15 to 20 cms | |||||||
| per minute result a | |||||||
| The addition of excissive shoft waste in | |||||||
| Mixing will create yarn that are more neppy | 4) Modren high production cards the direction | ||||||
| improper mixinf of long and short cottons | of rotation of flats is made opposite to rotation | ||||||
| widley different level will produce neps | of the cylinder this helps to reduce the neps | ||||||
| Fres flats are presented to the fibers that is | |||||||
| Cottn with widly different trash levels will | coming out of the cylinder at the tranceper point | ||||||
| produce more nep | |||||||
| 49 | 50 | ||||||
| NEP AND FIBER DAMAGES | NEP FORMATION IN BLOW ROOM | ||||||
| Fiber dmages refer to reduction in fiber length | 1. Cotton with too high or low moisture | ||||||
| due to repture of repture of fibers during process | 2. Extreamly fine cotton with high trash | ||||||
| The diffrence must be lower than 4.0 % | 3. Reprocessing of laps and soft waste mix | ||||||
| 4. Rough blend blades blent point beater pins | |||||||
| Length between the length of feed and delevery | 5.Damaged grid bars | ||||||
| is an indication fo fiber repture | 6.Narrow setting between the feed rollers or | ||||||
| pedal and beater | |||||||
| The chancess of fiber repture in the department | 7.Long curvecd aand U bends in conveyaer pipe | ||||||
| line | |||||||
| 1. Blow room | 8.Inproperate ratio of fan to beater speed | ||||||
| 9.Excissve application of tint improper dreying | |||||||
| The number of beating points used are | of tint before processing | ||||||
| Not more than 3 to 5 depending upon the | 10.Wider setting between stripping rail and beater | ||||||
| level of trash in the mixing | 11.Slak or too high fan belts | ||||||
| 12. Too high or low beater speeds | |||||||
| 2. Fiber damage main area lickren and feed | 13.Air leakege and obstruction of cotton through | ||||||
| plate to lickren setting it is suggested tnat | pipe line | ||||||
| 20 to 25 thous | 14. More number of beater than the requirement | ||||||
| 51 | 52 | ||||||
| CARDING | CARDING | ||||||
| High card sliver variation : | Nep formation in cards : | ||||||
| 1. Too hihg a tension draft and stretch of web | 6. Jammed wire in doffer | ||||||
| 2. Variation in setting between back plate | 7. Uneven flat setting | ||||||
| and cylinder | 8. Cylinder and flats or Doffer set too wide | ||||||
| 3. Variation in flats speed between cards | 9. Too much space between lickren cover and | ||||||
| peocessing the same material | feed plate | ||||||
| 4. Damaged front and back plate | 10.Undercasing chocked with fly | ||||||
| 5. Size of the coiler trumpet not adjested | 11.Cylinder doffer not stripped properly after | ||||||
| to hank | lapping | ||||||
| 6. Feed roller weighing not acting properly | 12. Dirty or chocked undercasing | ||||||
| 7. Diffrence in draft between cards | 13. Rough surface in front and back plate | ||||||
| 14.Insuffciant stripping | |||||||
| Nep formation in carding :- | 15.Higher doffer speed | ||||||
| 16. Too fine immeture or damp cotton | |||||||
| 1. Lap too heavy coler settings of selvedges | |||||||
| 2.Wider back plate to cylinder settings | |||||||
| 3. High lickren speed | |||||||
| 4. Lickren set too far form feed plate | |||||||
| 5. Blunt lickren wire or dull flats | |||||||
| 53 | 54 | ||||||
| COMBER | |||||||
| High combeer sliver variation :_ | |||||||
| 1. Diffrence in waste extraction between | |||||||
| heads | |||||||
| 2. Variation in the settings between back | |||||||
| detaching roller and nipper | |||||||
| 3. Improper cam setting depending upon the | |||||||
| staple length of the material | |||||||
| 4. Unicomb chocked with sead cots or | |||||||
| immeture cotton | |||||||
| 5. Variation in detaching roller diameter | |||||||
| 6. Improper timing of tomp comb | |||||||
| 7. Poor condition of sadles and top detaching | |||||||
| roller breakets | |||||||
| 8. Top comb touching the back detaching | |||||||
| roller | |||||||
| 9. Improper pressure on nippers jaws | |||||||
| 55 | 56 | ||||||
| DRAW FRAME | DRAW FRAME | ||||||
| High drawing sliver variation:_ | ROLLER LAPPINGS IN DF | ||||||
| 1. Improper pressure on top rollers | |||||||
| 2. Improper roller coverings ecentric top | 1. Incorect setting of top roller clearers or | ||||||
| and bottom rollers | worn clearers | ||||||
| 3. Incorrect trumpet size | |||||||
| 4. Improperly meshed or wrong gear wheels | |||||||
| 5. Excessive creel draft and web tension draft | |||||||
| 6. Stopmotion ineffctive function | |||||||
| 7. Incorrect sliver guide setting at feed | |||||||
| 8. Good fibers drawn due to high air pressure | |||||||
| 9. Variation in top roller diameter | |||||||
| 10. Warn out top rollers end bushess | End breaks in drawing :- | ||||||
| 11. Improper settings at sliver conditioning | 1. Double sliver in feed | ||||||
| plate at creel | 2. Improper peicing at back feed | ||||||
| 12. Imnproper settings in sliver tension | 3. Incorrect trumpet size | ||||||
| 4. Cotton having excissive honey diew | |||||||
| 5. Damaged surface in drafting rollers | |||||||
| 6. Deeply meshed gears | |||||||
| 57 | 58 | ||||||
| SIMPLEX PROBLEMS | SIMPLEX PROBLEMS | ||||||
| Hank variation in roving : | Stretch at simplex :- | ||||||
| 1. Too high a break draft or total draft | |||||||
| 2. Improper selection fo condencer guide | 1. Improper winding on ratchet wheel | ||||||
| 3. Vibration fo roving bobbinon the slat | 2. Improper starting position of cone drum belt | ||||||
| 4. Streching of sliver at feed | 3. Improper intial bobbin layer and incorect | ||||||
| 5. High variation in bare bobbin diameter | build of layer | ||||||
| 6. Indaquate top arm pressure | 4. Variation in bare bobbin diameter | ||||||
| 7. Incorrect movement of cone drum belt | 5. Improper shifting of cone drum belt | ||||||
| 8. Irregular are closed aprons | |||||||
| 9. Warn damaged or improperly meshed | |||||||
| gears and bearings | |||||||
| 10. Jurkey motion of bobbin rail | |||||||
| Roller lappings :_ | |||||||
| 1. Damaged surface in the top roller cots | |||||||
| 2. Use of varnished in the top roller cots | |||||||
| 3. Damaged aprons are condenser guides | |||||||
| 4. Too wide settings at the back zone | |||||||
| 59 | 60 | ||||||
| SIMPLEX PROBLEMS | END BREAKS IN SIMPLEX | ||||||
| SLUBS :- | 6. Indaquate top roller pressure | ||||||
| 1.Excissive end breaks | 7. Vibration in flyers | ||||||
| 2. Wate accumalation at creels clearer | 8. Use of narrow spacers | ||||||
| and flyers | 9. Damaged top edge of the cam | ||||||
| 3. Improper choice of spacer | 10. Loose spindle and bobbin shaft drive wheels | ||||||
| 4. Use of lower break draft | 11. Broken or damaged teeth in draft gears | ||||||
| 5. Closer setting at back zone | |||||||
| 6. Absence of positively driven top clearers | 12. Improper cleaning of draft zone | ||||||
| 7. Damaged or obsence of top and bottom | |||||||
| roller cloth | 13. Damaged can springs and D shape cans | ||||||
| END BREAAKS IN SPX | 14. Lashing of ends | ||||||
| 1. Incorrect choice of creel draft | |||||||
| 2. Sliver entanglement at feed | 15. Undrafting ends | ||||||
| 3. Improper peicing at back feed | |||||||
| 4. Too wide a back zone setting | 16. Warn out false twisters | ||||||
| 5. Looser or broken top and bottom | |||||||
| apron | |||||||
| 61 | 62 | ||||||
| RING SPINNING | BETWEEN BOBBIN COUNT VARIATION | ||||||
| Uneven yarn :_ | 1. Excive variation in tuft size | ||||||
| 2. Use of three passage in post comber | |||||||
| 1. Indaquate pressure on top rollers | 3. Frequent changes in penion df and comb | ||||||
| 2. Damaged or worn rings | 4. Improper roller space setting or finisher passage | ||||||
| 3. Heavy or lighter travellers | settings colser than the breaker passage in | ||||||
| 4. Defective and worn gears | drawing | ||||||
| 5. Colse setting of traveller clearer | 5. Excive stretch in roving | ||||||
| 6. Non alignement of aprons | 6. Lower twist in roving | ||||||
| 7. Improper top roller settings | 7. Variation in bare bobbin diameter | ||||||
| 8. Lappet and spindle setting not correct | 8. Row to row diffrence in roving hank | ||||||
| 9. Bottom roller ecentric | Spindle vibrations and ring frame vibrations | ||||||
| 10. Too wide or too close back zone setting | 9 .High variation in relative humidity | ||||||
| 11. Improper use of break draft | 10. Variation in top roller pressure | ||||||
| 12. Broken or damaged roving guide | |||||||
| 13. Obstruction or vibration in the | |||||||
| movement of roving travers | |||||||
| 63 | 64 | ||||||
| WITHIN BOBBIN COUNT VARIATION | THICK AND THIN PLACESS IN YARN | ||||||
| 1. High card sliver and comber sliver u% | 1. High fiber length variation | ||||||
| 2. Roller slippage in drawing | 2. Poor carding or combing | ||||||
| 3. Excive web tension draft in drawing | 3. Uneven roving excive forgin matter in yarn | ||||||
| 4. Ratching in roving | 4. Ecentric top and bottom rollers | ||||||
| 5. High tension draft or improper coils in roving | 5. Insufficant pressure on top rollers | ||||||
| 6. Use of long seperater plates at high | 6. Wider settings between aprons broken aprons | ||||||
| spindle speeds | 7. Too high a draft in ring frame | ||||||
| 7. Low humidity levels | 8. Improper setting of of tnesor bar | ||||||
| Cracks in the yarn :_ | 9 Worn rings | ||||||
| 1. Mixing cotton diffreing widely in staple | 10. Too close setting between traveller clearer | ||||||
| length | and traveller | ||||||
| 2. Too close setting in ring spinning | 11. Damaged top and bottom rollers | ||||||
| 3. Worn or unbuffed top rollers | 12. Jurkey motion of ring rail | ||||||
| 4. Improper stopping and starting of ring frames | 13. Worn out travellers | ||||||
| 5. Loese top and bottom aprons | 14. Excive fly lebaration in ring frames | ||||||
| 6. Inadequate top roller pressure | 15 | ||||||
| 7. Incorrect apron nip opening | |||||||
| 65 | 66 | ||||||
| SLUBS IN THE YARN | 7. Spindle out of center with ring and lappet | ||||||
| 8. Cracked and worn bobbins | |||||||
| 1. Excive short fibers in the mixing | 9. Improper fit of bobbins | ||||||
| 2. Inadaquate indivedualisation in cards | 10. Incorrect bobbin diameter | ||||||
| 3. Improper peicing in roving | 11. Worn rings | ||||||
| 4. Variation in top roller pressure in ring fr | 12. Traveller clearer set close | ||||||
| 5. Improper pecing of roving | 13. Improper fit of bobbins | ||||||
| 6.Bad peicing with too long over lapping | 14. Worn rings | ||||||
| 7. Too wide setting between apron and | 15. Traveller clearer too close setting | ||||||
| front roller | 16. Too high a draft | ||||||
| 17. Break draft not optimum | |||||||
| END BREAKS IN RING SPINNIG | 18. Loose and worn aprons | ||||||
| 19. Incorrect shore hardness of top rollers | |||||||
| 1. Dmaged skeewers and clogged bobbin | 20. Insufficant pressure on top rollers | ||||||
| holder | 21. Incorrect apron nip opening and setting | ||||||
| 2. Jerkey motion of ring rail | 22. Excessive twist in roving | ||||||
| 3. Vibration or ecentric spindle drive | 23. Lack of control of temparature nad humidity | ||||||
| 4. Slak spindle tapes | |||||||
| 5. Worn gear wheel and deep messhing gears | |||||||
| 6. Choking and improper alignment of pnumafil | |||||||
| 67 | 68 | ||||||
| HIGH YARN HARINESS | CLASSIMATE FAULTS | ||||||
| Factures influancing the classimate faults | |||||||
| 1. Mixing cotton with vide variation | |||||||
| 2. Excive short fiber content in mixing | |||||||
| 3. Use of excive draft in spinning & prep | 1. 25% of the classimate faults are influanced | ||||||
| 4. High spindle speed | by card process ( A1 B1 A2 B2 ) | ||||||
| 5. Incorrect choice of travellers | |||||||
| 6. Cutt in lappet hook | |||||||
| 7. Spindle lift | 2. 20% of faults inflyanced by Comber process | ||||||
| 8. Ballon formation | ( E F G faults ) | ||||||
| 10. Worn rings | |||||||
| 11. Ring rail jurkey motion | 3. 30% of faults are influanced by the ring | ||||||
| 12. Worn out travellers | frame process | ||||||
| 13. Improper bowe hight in traveeller | ( DRAFTING FAULTS ) | ||||||
| 14. Traveller pulling angle | |||||||
| 15. Too close traveller clearer setting | |||||||
| 16. Low tpi at ring spinning | |||||||
| 4. 30% of faults influanced by simplex and | |||||||
| material handling ( Thin faults) | |||||||
| 69 | 70 | ||||||
| CLASSIMATE FAULTS | CLASSIMATE FAULTS | ||||||
| Long thick faults :- | |||||||
| Short thick faults :- | 1. Presence of un opened roving in the blow room | ||||||
| lap or card sliver | |||||||
| 1. Presence of large ammount of trash high | 2. Folding or over lapping the blowroom layers | ||||||
| praportion of seed cot prigments | while feeding to the lickren of the cards | ||||||
| 2. Use of low micronaire cotton with high | 3. Use of improper settings in drawing | ||||||
| level of humidity | 4. Too low a web or creel draft in drawing | ||||||
| 3. Use of cotton containing high proportion | resulting improper drafting | ||||||
| of shart fibers | 5. Improper seating of floting and fixed condencers | ||||||
| 4. Excessive fiber entanglements | 6. Improper peicing in speed frame and ring frame | ||||||
| 5. Damaged wire points cylinder doffer | 7. Presence of lashing of excessive end breaks | ||||||
| 6. Absence of top roller clearers in simplex | in speed frame | ||||||
| 7. Use of broken and damaged surface of | 8. Too close a setting between traveller clearer | ||||||
| the floting condencers | and traveller in ring frame | ||||||
| 8 Use of too wide or narrow settings in roving | 9. Use of narrow spacers in ring frames resulting | ||||||
| and spinning machines | in undrafted ends | ||||||
| 9 use of improper spacers in speed frame | 10. Use of fibers having excessive variation in | ||||||
| and ring frames | fibers length resulting in formation of crakers | ||||||
| in the yarn. | |||||||
| 71 | 72 | ||||||
| CLASSIMATE FAULTS | Method of reducing classimate faults | ||||||
| Long thin faults :- | |||||||
| 1.Excissive incedence of web falling | While preparing the mixing wide variation | ||||||
| 2. Too high a break/ creel / web draft in | in length should be avoid | ||||||
| draw frames | |||||||
| 3. Excessive variation in top roller pressure | 2. Treatment and selection of beaters in blow | ||||||
| 4. Looses top roller end bushes in draw frame | room could be decided depending upon the | ||||||
| 5. Distrubence for the free rotation of creel | type of cotton to used avoid entanglements | ||||||
| callender rollers in draframe | |||||||
| 6. Sliver stretch of creel in speed frames | 3. Sytsamatic mentinence schedules should be | ||||||
| due to high a creel draft | followed | ||||||
| 7. Excisive roving stretch due to improper | |||||||
| function of builder mechanisiom | 4. Keep vire points condition should be followed | ||||||
| 8. Use fo empty roving bobbin In speed frame | |||||||
| with a wide variation in bare bobbin dia | 5. Higher cylinder and flats speed may be emplyed | ||||||
| 9. Sliver spliting in speed frame while drafting | |||||||
| 10. Use of ring tubes with improper fit on the | 6. Higher noil extraction during combing helps for | ||||||
| spindles | better removal of fiber cluster and immeture | ||||||
| fibers in lumps | |||||||
| 73 | 74 | ||||||
| CONTROLLING OF CLASSIMATE | SPECTOGRAMM ANALYSIS | ||||||
| FAULTS | |||||||
| 1. Break draft, creel draft in dra frame | IDENTIFICATION OF DEFECTIVE PART | ||||||
| speed frame should be maintedas per | FROM A GIVEN GEAR PLAN | ||||||
| standards | |||||||
| GEAR DIAGRAM | |||||||
| 2. The Condition and seating aprons , Floting | |||||||
| condencers Roving guidesShould be | |||||||
| maintained satisfactorily | |||||||
| 3. The setting between drafting rollers in | |||||||
| preparatory and spinning machine | |||||||
| should be kept as per the standard | |||||||
| 4. Over head clearers bottom roller clearers | |||||||
| should be used when ever necessery | |||||||
| 5. Better maintinence of machenery house | |||||||
| keeping Draft zone cleaning AND to avoid | WEAVE LENGTH OF THE PEAK IS = 3.0 CMS | ||||||
| fiber accumalation in lappet and traveler | |||||||
| clearer | |||||||
| 75 | 76 | ||||||
| SPECTO GRAM ANALYSIS | SPECTO GRAM ANALYSIS | ||||||
| Weave length of the faults form the | Defective component identification from | ||||||
| different parts : | ROTATING SPEEDS | ||||||
| 85T gear front roller = 22/7 x 2.54 cm = 8 cm | Whavelength in cms = | ||||||
| 160t Gear = 22/7 x 160/85 = 15 cms | Delevery speed in cms/ min (v) | ||||||
| --------------------------------------------- | |||||||
| 32T Gear 140T Gear = 15 x 32/16 = 3 cms | Frequancy in rpm ( f) | ||||||
| 100T Gear 35T Gear = 3 x 100/140 | Therefore f = v/lamida | ||||||
| = 2 cms | |||||||
| euating the rotating part ( wheel or roller) | |||||||
| Conclusion : | whose rpm matches with this "f" value | ||||||
| 32T Gear or 140T Gear or the | the defective part can be identified | ||||||
| connecting shaft is the defective part | |||||||
| 77 | 78 | ||||||
| SPECTOGRAMM ANALYSIS - D40 | LR SB - 851 PEAKS ANALYSIS | ||||||
| 1 Meter = Back top roller or can | 10 CMS = Top roller out of round | ||||||
| 90 Cms = Coiler | |||||||
| 80 Cms = Back bottom roller | 12 CMS = Top roller with cutts | ||||||
| 50 Cms = CP value or middle top roller | 6 Cms = Ovell shaped top rollers | ||||||
| 12 Cms = Front top roller | 68 Cms = Top roller with one spot | ||||||
| 10 Cms = Front bottom roller | Caused by pressure on stopped | ||||||
| 40 Cms = Middle bottom roller | toproller over an extend period of time | ||||||
| 17 Cms = Delevery roller | 11.3 Cms = 1st bottom roller | ||||||
| 3 Meters = Problem with scanning roller drive | |||||||
| LRSB - 851 PEAKS ANALYSIS | 50 Cms = Sliver funnel | ||||||
| 17 Cms = Callender roller or callender roller disk | |||||||
| 38 Cms = Breaak draft roller setting too wide | 85 Cms = Dort accumalation on the belt | ||||||
| 50 Cms = Main draft roller setting too narrow | 98 Cms = Distrubued sliver deposition | ||||||
| 8 Cms = Main draft roller setting too wide or | |||||||
| fiber to fiber friction is too high | |||||||
| Zig zag peaks = Top roller pressure not suffciant | |||||||
| 12 Cms = 1st bottom roller drive problem | |||||||
| 79 | 80 | ||||||
| LF 1400A PEAKS CALICULATIONS | COMBER PEAKS CALICULATIONS | ||||||
| 1. COLER CALLNDER ROLLER | 1. Coiler callender roller or 28t pully = 18.6 mm | ||||||
| 7 Cms = 50T Wheel | 2.79.5 pully or 40t = 26.6 mm | ||||||
| 10 Cms = Front roller | 3. 50 Pully = 16.8 mm | ||||||
| 12.5 Cms = 80 T Wheel | 4. 37T or 20T = 24.66 mm | ||||||
| 8.0 Cms = Draft change gear | 5. Vertical shaft Wobbling = 29.6 mm | ||||||
| 9.0 Cms = Front bottom roller | 6. 40t or 25 t = 26.65 mm | ||||||
| 7. B wheel or 45t or 72T = 47.99 mm | |||||||
| 14.0 cms = Spindle wharve shaft | 8. Front bottom roller = 12 mm | ||||||
| 15.0 Cms = bobbin gear | 9. A Wheel 20T Wheel 35T Wheel X A/B | ||||||
| 16.0 Cms = Bobbin faults | 10. Front top roller = 15.423 mm | ||||||
| 17.0 Cms = carrier wheel | 11. Middle bottom roller = 28t or | ||||||
| 18.0 Cms = carrier wheel | Drafting whave = 3358.74 A(BX C) | ||||||
| 19.0 Cms = carrier wheel | 12.Back bottom roller /Drafting wharve = 120x a/b | ||||||
| 28.0 Cms Apron Top | 13. 44T/22T/ = 30.16 X A/B | ||||||
| 60.0 Second bottom roller | 14. Machine Pully /29T/40T = 1206.48 X A(BXT) | ||||||
| 65.0 Cms = Second top roller | 15. 143T / PEICING PEAK = 5849.2 X A(BXT) | ||||||
| 70. Second top roller | 16.Main motor pully = 4.605 x A X G (BX T) | ||||||
| 95.0 to 1.0 meters = 3rd bottom roller | 17. 138T/35T = 4162.35 X (A/BX T) | ||||||
| 110 = third top roller 130 = 3rd drive wheel | 20. Take of roller = 16696.96 x A (B XT) | ||||||
| 81 | 82 | ||||||
| PREACATIONS AT T.F.O | PREACATIONS AT T.F.O | ||||||
| 1. Clean the seperators and capsules | 11 Every time hard waste should be put in the | ||||||
| whenever put feed package into pot | pecer bag | ||||||
| 2. Feed the feed package into one unwinding | 12. Lock the drop wire at the time of knotting | ||||||
| direction | 13. When ever the machine stopped lift the drop wire | ||||||
| 3. Do not feed the rejected cheeses | assembly through handle rod | ||||||
| 4. Particular condition should be followed | |||||||
| 5. At the time of thread cut knot under the pig tail | 14. Clean the flyer brush for every knot | ||||||
| rod release the break and arrange the | |||||||
| delevery package to the drum | 15. Do not keep any article inbetween the free | ||||||
| 6. Every yarn cutt clean the capsule and | takeup roller and take uproller | ||||||
| set it right | |||||||
| 7. All the pots should be infront of the red dots | 16. Feed the feed packages according to | ||||||
| 8. T.V Number should equal to all spindles | instructions | ||||||
| 9.Observe the ballon for all spindles if | |||||||
| ballon is not formed stop the package and | |||||||
| remove the untwisted yarn | |||||||
| 10. Every end cut delevery package should be | |||||||
| lifted automatically | |||||||
| 83 | 84 | ||||||
| ANALYSIS OF QUALITY PROBLEMS | Nep Generation Mechanical process | ||||||
| IN COTTON SPINNING | |||||||
| 1. Damaged blent beaters and spikes | |||||||
| Thick and thin generation :- | 2. Damaged bent clothings | ||||||
| 1. More short fiber in raw mateerrrial | 3. Poor condition of bushes in combers | ||||||
| 2. High length variation in raw meterial | 4. Rough damaged of grid bars and cover factures | ||||||
| 5. Toomaney pipe lines with bending in B/R | |||||||
| At Drafting stage :- | 6. Rough and damaged surface of fan blades | ||||||
| 1. Roller setting of finisher drawing | CLASSIMATE FAULTS | ||||||
| 2. Draft applied beyond the capacity | |||||||
| RAW MATERIAL FAULTS ( A & B ) Type | |||||||
| In process stage :- | |||||||
| 1. Large ammount of trash in cotton | |||||||
| 1. Quality of carding | 2. More sead fragmentation in cotton | ||||||
| 2. Quality of combing | 3. Low micronire | ||||||
| Nep generation :- | 4. Immaturity of cotton | ||||||
| 1. Low mic cotton | 5. More short fiber content of cotton | ||||||
| 2. Variation in moisture content in cotton | |||||||
| 85 | 86 | ||||||
| CLASSIMATE FAULTS ANALYSIS | CLASSIMATE FAULTS ANALYSIS | ||||||
| LONG THICK FAULTS :- | |||||||
| In process :- | 1. More soft waste in mixing | ||||||
| 1. Insuffciant nep removal at carding | 2. Excissive short fiber in mixing | ||||||
| and combing | 3. Poor control of humidity | ||||||
| 2. Higher total draft in spinning | 4. Improper peicing of drawing | ||||||
| 3. Fly and hariness in spinning | 5. Low top roller pressure at drawing | ||||||
| 4. Improper spacers in spinning | 6. Roller lapping at speed frame | ||||||
| 7. Lashes of ends at speed frame | |||||||
| SLUBS :- | Low top arm pressure in speed frame | ||||||
| 1. Accumalation of fluff | 8. Low break draft in speed frame | ||||||
| 2. Improper cleaning of clearer rollers | 9. Too wide spacer in speed frame | ||||||
| 3. Broken tooth of gear wheels improper | 10. Poor house keeping in spinning | ||||||
| messing of wheels | 11. Hard rovong peicing | ||||||
| 4. Damaged roller covering | 12. Low spinning peicing | ||||||
| 5. Poor carding due to worn out wire | 13. Low break draft at spinning | ||||||
| 6. Too wide front zone setting | 14. Low top arm pressure in spinning | ||||||
| 7. Improper spacer | 15. High hariness in yarn | ||||||
| 8. Indaquate top arm pressure | |||||||
| 87 | 88 | ||||||
| CLASSIMATE FAULTS ANALYSIS | CLASSIMATE FAULTS ANALYSIS | ||||||
| LONG THIN FAULTS :- | LONG THIN FAULTS :- | ||||||
| 1. More soft waste in spinning | |||||||
| 2. Mic value range more than 10% in mix | 17. Low Tm at speed frame | ||||||
| 3. Web falling in carding | 18. Speed frame bobbin variation/Play | ||||||
| 4. Too low and too high tension draft | 19. More break draft in spinning and simplex | ||||||
| 5. Chowking of under casing | 20. Wide back zone setting in spinning and spx | ||||||
| 6. Static charge generation in PV and PC | |||||||
| 7. Too narrow trumpet carding/drawing | 21. Creel strtetch criss cross in ring frame | ||||||
| 8. Wraong peicing practices at all stages | |||||||
| 9. Missing of sliver infective stopmotions | 22. Wide back zone in speed frame and | ||||||
| 10.Sliver rubbibg at each and inside cans | carding frame | ||||||
| 11. Distrubunce in creel | 23. Excessive tension weight in winding | ||||||
| 12. Sliver splittings | |||||||
| 13. Speed frame stretch | |||||||
| 14. Flyer leg chouking | |||||||
| 15. Inlet condnecer chouking | |||||||
| 16. Improper selection of sliver condencer | |||||||
| 89 | 90 | ||||||
| POSSIBLE CAUSES FOR CLASSIMATE | CLASSIFICATION OF CLASSIMATE | ||||||
| FAULTS | FAULTS | ||||||
| 1. SPACERS - A4 ,B2, C2 | OBJCT. FAULTS | ||||||
| 2. SPUN IN FLY - B4,C4,C3,D3,D4 | A4 B4 C4 D4 | ||||||
| 3. CAGE SETTING - B4,C4,C3,D3,D4 | A3 B3 C3 D3 | ||||||
| 4. FLY & HARINESS - A, B, C. | A2 B2 C2 D2 | ||||||
| 5. FORGIN MATTER - A3 +A4 | A1 B1 C1 D1 | ||||||
| 6. FLY AT TRAVELLER - A3,A4 | RAW MWTERIAL FAULTS | ||||||
| 7. RING FRAME PEICING - C3 ,C4 | A4 B4 C4 D4 | ||||||
| 8. FLY IN DRAWING - B4,C4,C3,D3,D4 | A3 B3 C3 D3 | ||||||
| 9. RING FRAME APRONS - B2, C2 | A2 B2 C2 D2 | ||||||
| 10. SPEED FRAME STRETCH - H1 | A1 B1 C1 D1 | ||||||
| 11. SPEED FRAME APRONS E | DRAFTING FAULTS | ||||||
| 12. SPEED FRAME DRAFTING - C3,C4,D2.D3 | A4 B4 C4 D4 | ||||||
| D4 | A3 B3 C3 D3 | ||||||
| 13. MORE TRASH IN MIX - B & C | A2 B2 C2 D2 | ||||||
| 14. FUSED FIBERS - B3,C2,C3 | A1 B1 C1 D1 | ||||||
| REASON WISE ANALYSIS | |||||||
| FOR CLASSIMATE FAULTS | |||||||
| 91 | 92 | ||||||
| FOR CLASSIMATE FAULTS | A4 +400% 0.10 TO 1.0 cms | ||||||
| 1. High ring frame speed | |||||||
| A1 +100% 0.10 to 1.0 cms length | 2. Loose fly | ||||||
| 1. Raw material | 3. High forgion matter | ||||||
| 2. Low mic | 4. Type of spacers | ||||||
| 3. Immature fiber | B1 +b100% 1.0 TO 2.0 CMS Length | ||||||
| 4. Insuffciant nep removal | 1. Raw meterial | ||||||
| 5. High ring frame speed | 2. High ring frame speed | 2. High ring frame speed | |||||
| A2 + 150% 0.10 to 1.0 cms length | B2 +150% 1.0 to 2.0 cms Length | ||||||
| 1. Raw meterial | 1. High ring frame speed | ||||||
| 2. Low mic | 2. Loese spun in fly | ||||||
| 3. Immature fiber | 3. Setting of spacer | ||||||
| 4. Insuffciant nep removal | 4. Piecing of faults | ||||||
| 5. High ring frame speed | 5. Cracks in spinning aprons | ||||||
| 6. Spun in fly | 6. Excissive trash | ||||||
| A3 + 250% 0.10 TO 1.0 CMS Length | |||||||
| 1. Raw material | |||||||
| 2. High ring frame speed | |||||||
| 3. Fly at travel | |||||||
| 4. Spun in fly & Forgion matter | |||||||
| REASON WISE ANALYSIS | REASON WISE ANALYSIS | ||||||
| FOR CLASSIMATE FAULTS | FOR CLASSIMATE FAULTS | ||||||
| B3 +250% 1.0 TO 2.0 CMS Length | |||||||
| 1. High ring frame speed | C3 +250% 2.0 TO 4.0 Cms | ||||||
| 2. Loose fly | 1. High ring frame speed | ||||||
| 3. Spun in fly | 2. Drafting faults | ||||||
| 4. Piecing faults | 3. Piecing faults | ||||||
| B4 +400 % 1.0 TO 2.0 cms Length | 4. Spun in fly | ||||||
| 1. High ring frame speed | C4 +400% 2.0 TO 4.0 CMS Length | ||||||
| 2. Loose fly | 1. High ring frame speed | ||||||
| 3. Spun in fly | 2. Drafting faults | ||||||
| 4. Long fibers and narrow guage setting | 3. Long fibers & narrow guage setting | ||||||
| 5. Tight guage setting | 4. loose fly | ||||||
| C1 +100% 2.0 TO 4.0 CMS Length | D1 +100% 4.0 to 8.0 cms length | ||||||
| 1. Excessive trash | 1. Drafting faults | ||||||
| 2. Drafting faults | D2 +150% 4.0 to 8.0 cms length | ||||||
| C2 + 250% 2.0 to 4.0 Cms length | 1. Drafting faults & long piecings | ||||||
| 1. High ring frame speed | D3 +250% 4.0 TO 8.0 CMS | ||||||
| 2. Drafting faults | 1. Drafting faults | ||||||
| 3. Piecing & spun in fly | 2. Long fibers | ||||||
| 3. Narrow guage length | |||||||
| 94 | 95 | ||||||
| D4 +400% 4.0 TO 8.0 cms length | G +100% 8.0 TO 32.0 cms length | ||||||
| 1. Drafting faults | 1. Worn out rings in ring frame | ||||||
| 2. Long fibers | 2. Incorrect setting and more breakeges | ||||||
| 3. Narrow guage length | in draframe | ||||||
| 4. Tight guage settings | 3. Very high hariness | ||||||
| 4. Improper mentinence of spinning machines | |||||||
| E +100% 4.0 TO 8.0 CMS Length | 5. Poor air conditioning control humidity | ||||||
| 1. Incorrect setting at draw frame | and air return | ||||||
| 2. More piecings at drawings | H1 -30% 8.0 TO 32.0 cms length | ||||||
| F +45% 4.0 to 8.0 cms | 1. Stretch of roving at speed frame | ||||||
| 1. Worn out rings in ring spinning | 2. Draframe settings and mentinence | ||||||
| 2. Inncorrect setting and more | 3. High brekege at drawing and speed | ||||||
| sliver breaks in speed frame | H2 - 45% 8.0 TO 32.0 cms | ||||||
| 3. Very high hariness | 1. Sliver splittings at speed frame | ||||||
| 4. Improper mentinence of spinning | 2. Creel stretch at ring frame | ||||||
| 5. Poor house keeping | 3. Settings and speed in R/F and speed | ||||||
| 6. Poor conditioning humidity | I1 & I2 ( - 45% 32 cms - 70% 32 cms above ) | ||||||
| and return air | High drafting whaves | ||||||
| Seperation of meterial | |||||||
| CV% CONTROL IN PREPARATORY | |||||||
| PROCESS | CONTROLLING OF COUNT CV% IN PREP | ||||||
| Comber :- | |||||||
| Use 26 mm detaching rollers | 6 | Avoid back bottom roller lappings | |||||
| Drawing : When ever lapping occures | 7. Check correct size of condencers no. of | ||||||
| remove sliver from the can | foldings | ||||||
| CAN :- 1. Can content must be optimum | 8. Use lesser break draft/ less cv% correct nose | ||||||
| 2. Coiling must be proper | bar setting | ||||||
| 3. Gap between sliver and can | 9. Trail with close bottom roller setting in | ||||||
| ptimum to avoid damage sliver | cotton optimum spacer | ||||||
| Speed frame :- | 10. Stretch at speed frame should be less | ||||||
| 1. Variation in top ar load should be | check stretch at intial 1/4th 1/2 and full | ||||||
| minimum | 11. Adjest shifting of belt / ratchet movement | ||||||
| 2. Check round as both sides of | |||||||
| top rollers adjest evenly by tilting | 12. Leave spindle idle in case of more breaks | ||||||
| the saddel | |||||||
| 3. Check traverse for sliver run through | 13. Avoid sliver splittings at creel and delevery | ||||||
| center cots and aprons | |||||||
| 4. Use low tension cradel springs to | 14. Maintian same creel draft in all draw frames | ||||||
| avoid lesser load on front top | |||||||
| rolleer | 15. Crsiis crossing of sliver movement to be avoid | ||||||
| CV% CONTROL IN RING SPINNING | ADOPTION MESURES TO CONTROL | ||||||
| 1. Bobbin holder rotation should be | COUNT CV% IN PROCESS | ||||||
| proper | Mixing :- | ||||||
| 2. Criss crossing of roving should be | 1. Adopt bale management tequnic | ||||||
| avoid | 2. Bale openeing done properly in such a way | ||||||
| 3.Creel high must be optimum -3 to bobbin | then tuft shouls be as less as possible 25 to 50 | ||||||
| from top arm | 3. Limit no. of bales to 10/ Mixing | ||||||
| 4. Group cv% must be checked | 4. Lay sandwitch mixing by drawing correspon | ||||||
| 5. Check for the balloning at ring frame to | ding ammount from each bale | ||||||
| avoid clashing with seperator | 5. Allow the mixing from 24 hrs conditioning | ||||||
| 6. Check proper filment of ring frame tube | for regain moisture | ||||||
| 7. Roving path should not touch bobbin | 6. 2.5% span length variation between lots should | ||||||
| 8. Winding length should be max possible | be below 0.5 mm the av3erage | ||||||
| 7. Weighted average of mic value should not be | |||||||
| 9. Trail with different top roller setting and | more than 8% | ||||||
| spacer | 8. Uneven mixing of soft waste and more soft | ||||||
| 10. Required same draft wheels for all ring | waste adding | ||||||
| frames for one count | 9. Maintain right RH% in all departments | ||||||
| ensure that humidifications correction factore | |||||||
| is taken care while correcting hank in machine | |||||||
| ADOPTION MESURES TO CONTROL | ADOPTION MESURES TO CONTROL COUNT | ||||||
| COUNT CV% IN PROCESS | CV% IN PROCESS | ||||||
| Blow room :- | Drawing :- | ||||||
| 1. Variation in tufft size is an important | 1. Maintain suffciant gap between the coils in | ||||||
| facture influence between bobbin | delevery can to avoid pealing | ||||||
| variation. | 2. Maintain the can contant as per recomanda | ||||||
| 2. Irregualr air flow in blow room condencer | tions 18" can dia should 14 to 16 kgs only | ||||||
| area | to avoid over filling | ||||||
| 3. Improper openeing and improper beater | 3. Avoid sliver distrubunce due to improper | ||||||
| speeds | handling | ||||||
| 4. Improper shyncranisation | 5. Life of the spring and ensure that the sliver | ||||||
| 5. Faulty air currents | coils has to come up due to spring pressure | ||||||
| 6.Dirty condencer screen with rough | while unwinding at next process | ||||||
| serface | 6. Use minimum web tension draft | ||||||
| Carding :- | 7. Ensure that the loading variations on top | ||||||
| 1. Ensure card sliver hank variation are not | roller to minimum possible extent | ||||||
| more than +/- 3.0% | 8. Ensure that all the top rollers are the same | ||||||
| 2. Ensure that meter to meter variation in | diameter | ||||||
| card sliver should be < 3.5% | 9. Ensure that A% and 1 meter cv% are under | ||||||
| control | |||||||
| 102 | 103 | ||||||
| Drawing : | ADOPTION MESURES TO CONTROL COUNT CV% | ||||||
| Ensure that correct size of feed and | IN PROCESS - SIMPLEX | ||||||
| and delevery condencers are running | |||||||
| in the machine for the same count | 1. Ensure that the correct size of delevery and | ||||||
| 11. Draframe sliver U% a direct influance | feed condencers and also same process | ||||||
| on the count cv% as well as fabric | 2. Worn out chouwking condencers to be | ||||||
| appearance | replaced | ||||||
| 12 | Hank to be confirmed in the autolevelers | 3. Sliver in creel should not be criss/ cross | |||||
| off positiojn once in a week for | 4. Can spring condition can top edge damage | ||||||
| all draframes | coiling in cans should not touch cans inner | ||||||
| 13. Normally hank correction to be carried | edge to avoid peeling off | ||||||
| out +/- 1.0 % | 5. Damage false twister | ||||||
| 14. With short staple cotton 2 passages | 6. Ensure minimum diffrence in between front | ||||||
| of post combing drawing will reduce | and back row | ||||||
| the count cv% significaantly | 7. Check 5 meters 30 samples for roving cv% | ||||||
| 15. Ensure group feeding at all placess | once in a week cv for corser hank 0.7 and | ||||||
| for better control on aaand better | finer haank 1.0 | ||||||
| quick tracability of deviations | 8. Ensure that same number of turns on | ||||||
| all spindles ensure that there is no choking in | |||||||
| the flyers inside portion use horn for cleaning | |||||||
| 104 | 105 | ||||||
| Simplex :- | ADOPTION MESURES TO CONTROL CV% | ||||||
| corrct wi nding on wheel ( L.W) | 1. Variation in RF Draft in between frames | ||||||
| incorrect winding on wheel is more | 2. Slippage of top rollers and aprons indauate | ||||||
| determental to count cv% in correct | weighting improper grip groved formation | ||||||
| ratching wheel | 3. Stretch of meterial in creel lesser roving TM | ||||||
| ( No. of coils/ cm = 5.0/ Hank) | Bobbin holder struck up and more creel hight | ||||||
| 4. Higher frequancy of cots buffing and high | |||||||
| Preferbly wind the bobbin rail up or down | starting dia will helpful to reduce count cv% | ||||||
| to start with a full layer to avoid ratching | 5. Toparm loading variation Due to worn out | ||||||
| in the intial layer | springs air leakege improper seating of cradel | ||||||
| Ensure that creel drive is smooth | 6. Mis alignment of creel roving bobbin criss - cross | ||||||
| roving | |||||||
| Attention should be given to clearer waste | 7. Creel guide rod position inrelation to the bobbin | ||||||
| problem process wise mc wise spdl wise | and count ( if located too high or too low stretch | ||||||
| delevery wise | taken when roving un winds from top most bottom | ||||||
| most portion of roving bobbin | |||||||
| Attention should be given to groved aprons | 8. Ensure that roving does not touch other bobbin | ||||||
| groved cots which causes slippage | in ring frame creel | ||||||
| 106 | 107 | ||||||
| GENERAL CONSEPT OF COUNT CV% | REDUCING RING FRAME BREAKEGES | ||||||
| Higher cv especially of medium to long | If brekege rate is more from 0 to 1/4 th stage | ||||||
| length range results in moire like appearance | the following precotions to be taken | ||||||
| in fabric and increase warp way steaks and | 1. Reduce the speed pattren at intial stage | ||||||
| weft bars | 2. Check the ballon formation when the ballon | ||||||
| More clearance between ring dia and full | touch the seperator create a breakage | ||||||
| package | at lappet eye ank make multiple breakes | ||||||
| cv% of half lea will be 1.2 to 1.3 times more | 3. Bottom cop built change cercular shape | ||||||
| than cv% of full lea | to "V" Shape | ||||||
| Wraping of cv of wraping may be on 5 yards | 4. Use heavy traveller to control baloon formation | ||||||
| instead of 15 yards at simplex | 5. Change the traveller profile | ||||||
| at drawing cv of wrapping based on 0.5 yard | 6. Observe the traveller loading means fluff | ||||||
| length will be more useful | at travellers | ||||||
| Total yarn coung variation is contributes by | 7. Change the traveller clearer setting 1.8 mm | ||||||
| 65% between bobbin variation and 35% | 8. Lappet hole dia should be 1.5 mm to 1.8 mm | ||||||
| within bobbin variation | 9. Select suitable flange and traveller profile | ||||||
| 10. Use ring lope oil in ring spinning | |||||||
| under good working condition blow room | 11. Slect propler hase length D to d = 2:1 | ||||||
| and carding accounts for 14% draw frame | |||||||
| 108 | 109 | ||||||
| REDUCING RING FRAME BREAKEGE | REDUCING RING FRAME BREAKEGE | ||||||
| 1. The ring traveller together with the | |||||||
| yarn as a pull element is set into | 1. The tube length determains (with the yarn | ||||||
| motion on the ring by the rotation of the | guide the maximum ballon length this is an | ||||||
| spindle | important facture for the performance of ring | ||||||
| 2. If the direction of pull deviates too much | spinning machine. | ||||||
| from the running direction of the | 2. Shorter the ballon higher traveller speed | ||||||
| traveller (alpha less than 30 deg) the | can achive | ||||||
| tension load will be too high | 3. spindle rotation without vibrations and | ||||||
| 3. The pulling tension can be reduced | correct consist of bobbin tube | ||||||
| by adopting the ring or tube dia | |||||||
| 4. During winding upon the tube after | 4. Ring with exact roundness and firm seating | ||||||
| doffing resp. at the top of the conical | in horizental position | ||||||
| part of the bobbin | 5. Correct seating of the traveller clearer space | ||||||
| 5. Ratio of tube length to ring diameter | should be 0.2 to 0.3 mm | ||||||
| ideal ratio 5 :1 | 6. Rtecomanded flange width | ||||||
| 6. Lappet hight 2d +5 of tube dia for lappet | 1/2 flange 2.6 mm | ||||||
| setting | Singel flange 3.2 mm | ||||||
| Double flange 4.0 mm | |||||||
| 110 | 111 | ||||||
| REDUCING RING FRAME BREAKEGES | BLEND TEST PROCEDURE | ||||||
| Binarey mixtures of regenerated cellulosic | |||||||
| and cotton mix | |||||||
| 1. When the ring diameter is less ballon | 1. Ammonia ( Dilute solutions ) | ||||||
| diameter will be small this leds to more | 20 ml concentrated Ammonium hydroxide | ||||||
| yarn tension hence use lighter traveller | specific gravity % 0.88 made up to 1 leter | ||||||
| of water | |||||||
| 2. When the ring diameter is high ballon | 2. Concentrated solfuric acid = 60% +b wa | 2. Concentrated solfiric acid | |||||
| diameter will be more this leads to less yarn | 60% H2SO4 +40 % WATER | ||||||
| tension and ballon touches the seperator | |||||||
| hence uyse heavier traveller | 3. Tools two glas flasks and one mechanical | ||||||
| rod. | |||||||
| 3. When the tube length is long the yarn | Procedure :- | ||||||
| tension will be less hence use hevier | |||||||
| traveller | 1. Take test specimen about one or two grams | 1. Take test specimen one or two grams or lea | |||||
| 2. Then dry the specimen at 105 Deg c in oven | |||||||
| 4. When the yarn contact area and ring contact | 3. Trancefor the specimen to a glass flask at | ||||||
| area in traveller is closer fiber lubrication is | room temparature | ||||||
| better especially in cotton hence use | |||||||
| hevar traveller | |||||||
| 112 | |||||||
| BLEND TEST PROCEDURE | 113 | ||||||
| BLEND TEST PROCEDURE | BLEND TEST PROCEDURE | ||||||
| 4. Apply the saluation 60% sulfuric | PERCENTAGE OF COTTN = | ||||||
| 40% water at 27 De c | |||||||
| 5. Shake thoughly preferby with a | 100 X Mr x d / MS | ||||||
| mechanical rod for 30 min | |||||||
| 6. And then trancefor the specimen | Mr = Specimen weight after dessolve | ||||||
| to another glass | d = Correction factore ( 1.05) | ||||||
| 7. Then use again apply the saluation | MS = Weight of the specimen bofore | ||||||
| with few minutes wash the specimen | dessolve | ||||||
| with the salfuric acid saluation | |||||||
| 8. Then wash the specimen with | Then you an know the percentage of | ||||||
| dilute ammonia saluation | cellulosic re- generated fiber | ||||||
| ( Ammonium hydroxide ) | |||||||
| 9. Then wash the specimen with water | Report :- The report shell include the following | ||||||
| twice | information | ||||||
| 10. Dry the specimen with 105 De c | A = Type of meterial B = % of re generated fiber | ||||||
| Temparature | C = Cotton | ||||||
| 114 | 115 | ||||||
| SOME BLEND TEST SOLVI NG | P.V. BLEND TEST PROCEDURE | ||||||
| AGENTS | |||||||
| 1. Water 30 ml +H2SO4 40 ML | |||||||
| 100 % Polyester dissolved in final | |||||||
| Reduce the sulution temparature 45 Deg C | |||||||
| 100% vsf Dissolved in H2SO4 | |||||||
| Kept the specimen in the sulution | |||||||
| Wool 95% water +5% costic soda | |||||||
| Heat the soulation | Kept 30 Min idle condition | ||||||
| PV = H2SO4 + WATER | |||||||
| Wash the specimen with hot water | |||||||
| Acrylic : Dyemethal formide | Dry the specimen | ||||||
| Weight the specimen | |||||||
| After weight/ Before weight x 100 | |||||||
| 100 - Value = Blend % ( Viscose dessolved) | |||||||
| 116 | 117 | ||||||
| YARN FAULTS GENERATED IN | TYPES OF FAULTS GENERATED IN SPINNING | ||||||
| RING SPINNING | Spun - in - fly :- S1 | ||||||
| DIAGRAM | This referse to free fibers which fall into the | ||||||
| drafting elements or into the roving beaing fed into | |||||||
| the drafting unit and are then twisted into the yarn | |||||||
| along their entire unit | |||||||
| Loosese fly :- S2 | |||||||
| This refers to fibers which are collected by the | |||||||
| yarn at a position after the front roller and in most | |||||||
| cases are only spun in out one end | |||||||
| Longe collection of fly :- S3 | |||||||
| These are matted fibers which collect together on | |||||||
| apron or rollrs and form time to time are collected | |||||||
| and carried along by the yarn | |||||||
| 118 | 119 | ||||||
| YARN FAULTS AT SPINNING | YARN FAULTS AT SPINNING | ||||||
| Crakers :_ ( S7) | |||||||
| Fishes ( Corkscrew ) :- S4 | These results due to extra long fibers | ||||||
| These faults results to due to static charging | which distrubute the drafting process and | ||||||
| or a result of un suitable drafting or drafting | for short instant of time stop the passage of | ||||||
| aprons which have craked surface | yarn. | ||||||
| Pushed together of fibers :- ( S5) | PIECINGS ( P1 ) | ||||||
| These are faults resulting from held back | As with the short staple materiales these | ||||||
| fibers and occure primery at the ring | faults are normally produced in the process | ||||||
| traveller | prior to spinning | ||||||
| Chains of faults :- ( S6) | LONG SLUBS (P2) :- | ||||||
| These are combination of the faults S1 S2 | |||||||
| Possibely also S3 which occure in short | This referse to premearly short fibers or haires | ||||||
| sucession one after the other along the | which hold together as a single unit and appear | ||||||
| length of the yarn | IN | the yarn as untwisted placess | |||||
| 120 | 121 | ||||||
| TIPS FOR RING TO TUBE RELATIONS | HOW TO REDUCE BREAKEGE RATE IN RING | ||||||
| SPINNING AT THE STAGE OF 0 - 1/4 Th | |||||||
| 1. Reduce the speed patterning at initial stage | |||||||
| Lappet setting = 2d + 5 mm | 2. Check the ballon formation when the ballon touch | ||||||
| the seperator break at lappet eye and make | |||||||
| 2d = Tube top dia ( Bobbin) | multyple breaks | ||||||
| Ring dia to tube dia = | 3. Bottom cop built change cercular shape to | ||||||
| 2 : 1 mm = | "V" shape | ||||||
| Ex ring dia = 36 mm Tube top = 18 | 4. Use heavy traveller to control ballon formation | ||||||
| Ratio = 2 : 1 mm | 5. Change the traveller profile | ||||||
| Ring dia to tube length = 1 : 5 mm | 6. Observe the traveller loading mean fluff at | ||||||
| traveller | |||||||
| Ex ring dia 36 mm Tube length = 180 | 7. Change the traveller clearer setting 1.8 mm | ||||||
| 8. Select suitable flange and traveller profile | |||||||
| Chase length = | 9. Use ring lope oil in ring spinning | ||||||
| 10.Select the proper chase length | |||||||
| Ring dia + 5 mm or 10% of ring dia | 11. The ring traveller together with the yarn | ||||||
| as a pull element is set into motion on the ring | |||||||
| 122 | 123 | ||||||
| REDUCING BREAKEGE RATE IN SPINNING | HOW TO REDUCE BREAKEGE RATE | ||||||
| By the rotation of the spindle | IN RING SPINNING @ 1/4 Th stage | ||||||
| If the directin of pull deviates too much | |||||||
| from the running direction of the traveller | The tube length determains ( With the yarn guide) | ||||||
| ( Alpha less than 30 Deg ) the tension load | The maximum ballon length this is an important | ||||||
| will be too high. | factore for the performance of ring spinning | ||||||
| machine | |||||||
| The pulling tension can be reduced by | |||||||
| Adopting the ring or tube diameter | 14. Shorter the ballon higher traveller speed can | ||||||
| achive | |||||||
| ( Alpha greater than 30 Deg during the winding | 15. Spindle rotation without vibration and correct | ||||||
| upon the table after doffing resp. At the top | connectivity of bobbin tube | ||||||
| of the conical port of the bobbin | 16. Ring with exact roundness and firm seating | ||||||
| in horizental position | |||||||
| Ratio of the tube length to ring diameter | 17. Correct seating of the traveller clearer space | ||||||
| should be 0.20 t0 0.3 mm | |||||||
| 124 | 125 | ||||||
| HOW TO REDUCE BREAKEGE RATE | 18.0 1/2 Flange = 2.6 mm | ||||||
| IN RING SPINNING @ 1/4 Th stage | Single flange = 3.2 mm | ||||||
| ring by the rotation of the spindle if the direction | Double flange = 4.0 mm | ||||||
| of pull deviates too much from the running | |||||||
| direction of the traveller ( alpha less than 30 | When the ring diameter is less ballon diameter | ||||||
| degree) the tension load will be too high | will be small . This leads to more yarn tenson | ||||||
| Hence use lighter traveller | |||||||
| The pulling tension can be reduced by | |||||||
| adopting the ring or the diameter | When the tube length is long the yarn tenson | ||||||
| During winding upon the tube after doffing | will be less hence use havier travellers | ||||||
| resp at the top of the conical part of the | |||||||
| bobbin. | When the yarn contact area and the ring | ||||||
| 12. Ratio between tube length to ring diameter | contact area in traveller is close fiber lubrication | ||||||
| Ideal ratio = 5 :1 | is better especially in cotton hence use heavear | ||||||
| 13. Lappet hight 2d +5 mm of tube dia for lappet | Traveller | ||||||
| setting | |||||||
| Traveller speed should be 35 to 40 mts/Sec | |||||||
| GENERAL FOURMULAS | |||||||
| 126 | 127 | ||||||
| 1. Builder motion : | 6. Cotton yarn content in cop = | ||||||
| New ratchet = present ratchet wheel | 3.25x L X D2 = L = SPDL LIFT D = RING DIA | ||||||
| x sqr of present HK/ New hk | 7. Roving contnent in kgs = ( 3 x L X D2)/1000 | ||||||
| 8. Sliver content in kgs ( for different can size) | |||||||
| 2. Twist change wheel : | = 1.5 x Height x Diameter 2 | ||||||
| New change wheel = Present wheel x | 9. HOK = | ||||||
| ( sqr of present Nec /New Nec ) x Present | ( Operative hours/ Total of the standardized | ||||||
| TM/ New TM | ring spinning production in indivedual counts x 100) | ||||||
| 3. Yarn tension weight = 0.571 x lea strength | OHS = | ||||||
| in kgs +1.8 | ( HOK adjested to 40s x Production/ spindle | ||||||
| 4. Open end spinning TPM = | adjested to 40s )/800 | ||||||
| Delevery speed in mts/ min x tex x 60 | 10. Relation between twist Multiplier for maximum | ||||||
| x eff% / 1000 | strength | ||||||
| = (Rotor rpm x tex x eff x 60) / 1000 x tpm | T max = ( 50 - L + f )/9 | ||||||
| T max = Tm for maxximum strength | |||||||
| L = 50% SPAN LENGTH f = Mic value | |||||||
| GENERAL FOURMULAS | 2 | ||||||
| 128 | 129 | ||||||
| 11. Fiber bundle strength = | |||||||
| ( Breaking load in kgs x 15)/ sample | |||||||
| weight in milligrams | |||||||
| Breaking elongation% = | |||||||
| ( Length at breaking load - Nominal guage | |||||||
| length )/Nominal guage length x 80 | |||||||
| The pressely index ( P.I) | |||||||
| ( Breaking load in pounds/ Bundle weight | |||||||
| in milligrams ) | |||||||
| 12. Effictive length bear sorter = | |||||||
| 1.013 x 2.5% span length | |||||||
| 13.Mean length = 1.242 x 50% SL + 9.78 | |||||||
Saturday, August 24, 2019
handbook of textile calculations and stastical formulaes
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment