Saturday, August 24, 2019

handbook of textile calculations and stastical formulaes


















         
   
  1
   
2  
 

   
  1)  Double yarn imperfections = S.Y.Imperfections x 0.2.
 

   
             Single yarn imp  x 0.17
       THE HANK BOOK OF STATASTICAL  
   
        AND PRODUCTIVITY FOURMULAS  
  2 ) Single yarn strength in grams =
               PART - 1    
               Strength inlbs/ 0.276
 

   
   
         Contents :-
   
  3 ) RKM  =  C.S.P / 176 or C.S.P X 0.6/100
        >  The machine related faults & remidies  
   
        > Statastical & prodectivity fourmulas  
  4) 1 Deg C = 32 X F X 9/2
       >  Process problems & remidies  
   
      >  The compleat source of yarn faults classifications  
  5)  Traveller speed =   ( Meters/Sec )
      > The orgin of yarn faults and remedies  
              3.14 x Ring dia X spdl speed
                             
   
                -------------------------------------
 

   
                    60  x 1000
      Prepared By :
   
  6)  No. of winders =
     D.NAGESWARARAO.
   
              Production/ Frame
     Quality control officer
   
              ------------------------
     M/s I.C.M. LIMITED
   
                 Production/ Winder
        GUNTUR ( Dt)      
   








3        
4  
        7) No. of drums allotment =    
  11) Double yarn C.S.P = S.y C.S.P X 1.25
   4.8 x length of yarn per bobbin mts +1  
  12) Double yarn U%  = Single yarn u% x 0.7
  -----------------------------------------------------  
  13) Cop content   =
     winding speed mpm    
                    3.8 x ( Ring dia2)x lift in Inches
 

   
  14)  Denier =  Mic x 0.354
       8 ) Machine effciancy  =    
  15) Mic = Denier x 2.82
                  4500 x length of yarn in mts  
   
  -------------------------------------------  
  16) STD. FRS =   Caliculated speed
     Winding speed x no. of drums  
                    STD.Speed/ Act. Tpi x Fr. Dia x 3.142
 

   
   
       9 )  Ring traveller cut in groving =    
   
 

   
  17)  ACT. FRS = Act. SPEED
    494 x lea strength in lbs x 10  
                           -------------------
  --------------------------------------------  
                            Act. TPI X Fr. Dia X 3.142
  Ring dia in mm x Spdl speed  
  18) No. of coils/ inch ( For course count )
 

   
                  T.M  X 10 SQR H.K
     10 )  Tension weight in Grams =    
  19) No. of coils/inch ( Fine HK )
                 Lea strength in lbs x 0.118    
                T.M X 13 SQR H.K
 

   
   
         
   
















5      

6  
       20) Sides allotment in ring frame =

             23) Fiber mturity ratio :
 

 

                    Normal fibers - Dead fibers 
                   b = 125/n - 30/sqr c - 1

      -----------------------------------------   x 0.7
                 b = end breaks/ 100 spdl/ hr

  200
                  c = count ne  

   
                  n = no. of sides assinged for a tinter

     24) Maturity co - effciant =
 

 

   
     21 ) Relative humidity =  

            N +0.75+0.45D/ 100  
               Actual Vapaur pressure

  N = Normal fibers
  --------------------------------- x 100

  T = Thin walled or half mature
  Standard vapour pressure

  D = Dead fibers
 

 

   
    22)  Correction of yarn count for Humidity

  24) Fiber diameter in microns
           changes  ( Corrected count Ne)

        Sqr of  3.14 x Denier/specific gravity 
                  = n (100 +b Ra )  

   
      ---------------------  

            25) Drawing delevery speed mts/min
      100 + Rs   

                   =  3.14 x D X N/1000
            N =  Actual count   

   
            Ra  = Actual regain  

   
            Rs  = Standard Regain  

   
















7      

8  
     26) Maturity co - effciant   

             28) R/F Production/ spindle/ 8 hrs =
 

 

                     SPDL speed x 60 x 8 
             N + 0.75 +b 0.45D  

                   --------------------------------  x eff
  ----------------------  

                   840 x 36 x tpi x ct x 2.204
  100
 

   
 

 

             28) Expected hanks/ shift/ 8 hrs =
  N = Normal fiber  

   
  T = Thin walled or half walled mature

                 Spdl speed/ tpi / 63 x eff
  D = Dead fiber  

   
 

 

            29) Fourmula to find out bobbin building
     27)  Fiber diameter in microns 

                     Total turns on bobbin/ spdl speed
                   sqr of 3.14 x Denier/ Specific gravity

   
 

 

             Total turns on bobbin = 
    Delevery speed in mts/ Min  ( Drawing )

                     Length in inches of yarn in bobbin x TPI
 

 

   
              =  3.14 x D X N / 1000  

            Length in inches in bobbin = 
 

 

                      Wt of the material in lbs x 840 x 36
 

 

   
 

 

   
       

   
















9      

10  
    32)  Twist contraction %  =  

            36 Total mechanical draft =  MD X BD 
                ( 2.64 x T.M ) - 4.82  

                             24.22 X 1.46
    33)  Avg, Count 
 

            37) Winding length /cam revaluations
           (  C1W1 +C2W2 +C3W3 )  

                 1 x 121 x 73 x 69 x 26 x 3.14 x 27
               --------------------------------

                -------------------------------------------------
                W1 +Bw2 W1 + Bw2 +W3    

                  2 x 40 x 102 x 29 x 1000
 

 

                    = 5.67 mts
         C1, C2, C3 are the counts  

            38) Count delevered at front roller nip
         W1 ,W2,W3 Production/shift

                     Total draft x Roving hank
 

 

           39) Yarn cv% =
      34) IFTPI Changed then grams/ Spindle

                     CV% +/- 2CV%/SQR OF N 
 

 

   
             Given production x curent TPI/EXPT. TPI

           40) Yarn diameter = 0.95/ sqr of count
 

 

   
      35) If spindle RPM Changed  then grams/spdl

            41) Coils/ inch = 0.50x sqr of ct x 25.4
 

 

   
          = Given production x expected RPM

          42) Yarn relisation = 
              ---------------------------------------------

                   ( 95 -T) ( 1 - C/100)3
                Running spindle RPM  

   
       

   
















11      

12  
     43) To find out the average Denier in a mixing

         46) Energy cost  =  
           Denier %
 

                   Total units /Production in kgs
       

 

   
    Ex : 1.5D    - 50%
 

       47) U.K.G = total units lost consumed/
            8.0D     20 %
 

                         Production in kgs
            3.0D     30 %
 

         48) Linear density  of yarn in count systeam
 

 

   
       =  50/1.5 +20/8 +30/3   =  45.8

              Ne = 453.6/ 7 x M
                  100/45.8 = 2.18  

                           m =  120 yds
         

 

   
     44)  Caliculation of siders% achived siders%

         49) Count in yarn tex =  M/100 X 100
 

 

   
                  Act. Hanks ( 100 - cal.w% +ach idles

   
  ------------------------------------------------------

          50) Dia correction facture = 
        STD Hanks x (100 - Stdw% +STD 

                  Old correction facture x Normal dia
             IDLES  

                   --------------------------------------------
 

 

                       Actual dia
        45)   Twist variation %  =  

          51) Centinutons to grams
                   Twist variation/Intial tpi x 100

                   CN X 2.5 = GRAMS
       

   
















13      

14  
      51) T.F.O Producton/ spindle/ 8 hrs  =

          55) Take up roller speed = 
 

 

                     0.204 x Spindle speed/TPI
             Spdl speed x 60 x 8 x 2   

   
     -----------------------------------------------

           56) Cam speed = Take up roller speed x 27
         TPI X 36 X 840 X Ct x 2.204  

                             -------------------------------------------
 

 

                           100 x cam wheel  x 50
       52) No. of Twists = Spdl speed rpm x 2/

   
             Yarn speed in mpm  

            57) Pre take up roller speed =
 

 

                     Take up roller speed x 72/28 x Drive wheel
              =  15168.6 x d/D  

                 --------------------------------------------------------
 

 

                              Driven wheel
        53) Delevery speed = Spdl speed/ 

   
              TPI X 39.37 X 2  

            58) Over feed ration = 72/28 x Driver / Driven x 51
 

 

                                              /77- 1 x 100
       54) Lease Angle ( Tan )  

   
              2 x Traverse length x takeup roll Speed

            59) Density of take up package = 
             -------------------------------------------------------

                     
               3.14 x Take up roller dia x Cam speed

   
 

 

   
       

   
















15      

16  
      60)  Density of take up package =

       65) Total imperfections  = 0.170 x S.Y Imperfections
                Package in grams x 3.14

   
              -------------------------------------

      66)  Double yarn uster =  Single yarn uster
               12 x H X ( D2 X D X d2)  

                               --------------------------
 

 

                                Sqr fo No. of plyes
        H = Length in traverse  

   
        D = Bigger dia of delevery package

               LF 1400A 4/4 DRAFTING CALICULATIONS
        d = Smaller dia of delevery package

               Dia 27 mm
 

 

                
        61) Power consumption wats/ Hr

       67) Creel tension draft = 0.022 x We
                 3 x cos tita
 

   
        62) 1 unit = 100 Wattts/ Hr  

        68) Twist constant =  0.0091426 x G/H X T.W
              1 Unit = 1 kw/ hr  

   
               1 Unit = 745 Watts  

        69) Draft constant = 29967.95/ BDCP X CP
        63) Doubling yarn strength =

   
              2.5 x ring yarn strength  

        70) Cone drum end wheel  =
       64) Doubling TPI =  S.Y TPI X 0.7

                  K X D1 X 1.83/ds
        

 

   
 

 

        71) Lifter whel =  10.5 x E/F X B1 / sqr of H.K
       

                         B1 = 2.8
















17      

18  
    71) Tensen wheel =   

     77) Draft constant = 29967.95 / BDCP
 

 

                                  
            4742 x B2 / D.S. X SQR H.K

    78 ) Break drat  =  66.818/ BDCP
 

 

                     
         B2 =  0.58
 

      79)  Tension wheel = 4742 x B2 X D.S X sqr of H.K
         D.S = Bare bobbin dia  

   
 

 

       80) Coils per inch  for course roving =-
      72) Coils/ inch  = For course roving =

   
                     TM X 10 ( Hank) 1/2  

                  TM X 10 ( H.K) 1/2
           For fine  =   TM X 13 ( HANK) 1/2

   
 

 

        81) For fine roving  =
            LF 1400A DRAFTING 4/4 30 MM

   
 

 

                  TM X 13 ( Hank) 1/2
     73 ) Creel tension draft =  

   
                0.024 x We ( creel tension wheel)

   
       74) Twist constant  0.008270 x g/h x Tw

                   RSB 851 CALICULATIONS
 

 

   
      75) Draft constant = 29967.95

        82) Creel tension draft = 
                              -------------------  

                   0.00694 x w1 ( creel tension wheel)
                              BDCP X CP  

   
















19      

20  
       83) Draw of tension  = 0.0175 x W3  

         83) Intake tension draft  = 0.7398 x w8/w9
                                       ( Draw of tension pully)

                  ( W8 +b W9 = 132 Teeth)
 

 

                 
        84) Draft = 6.017 x   ( Nw2/nw )

         84) Break draft =  draw ot tension =
 

 

   
        85) NW1 = Required hank   

                   0.0175 X W3 ( Draw of tension pully)
                         --------------------  

         85)  Draft = 6.017 x NW2/NW1
                   Present hank x present draft

   
 

 

   
        86) NW2 = Required hank  

        LR 6/S CALICULATIONS
         ---------------------

             Spindle wharve = 19 mm             18.5 MM
         Present hk x present  NW2

        Twist constant = 27.44 x d/c x b/a    28.15
 

 

             Draft constant = 10.519x H/G      
        87)  B90 = Act. Hk - Std hk   

             Winding leangth =  3.11 x E/F
                       ------------------------     ---------------------------  x 1600

            Break draft constant = 67.09/BDCP  67.09
                       Act. Hk 
 

            
 

 

                A +B = 165  C+D = 137  E+F = 113 
         88)  A %    n - 1  =  (n - 1) - n /n x 100

                G+H = 130 TO 175
                          n +1 = (n+1) - n / n x 100

   
       

   








21      

22  
            WINDING CALICULATIONS

          96) Production % =    Act. Prod
 

 

                                         ----------------- x 100
    Production/Drum / 8hrs  

                                          Std. Production
 

 

          97) Overall %   =   P% X U%/100
           MPM X 1.0936 X 60 X8  

   
-----------------------------------------------

         98)   Tension weight in grams =
            840 XX COUNT X 2.204  

                      1.8 +b(0.571x elongation lea str/kg)
 

 

   
          0.2835 X MPM/ COUNT   

              Yarn quality facture = 
 

 

                              Cleaning effciancy/ Knot facture
        94) Length correction factor  =

   
 

 

            99) Knot facture =  Total number of slub catchers
                   STD Length / Act. Length x present

                                       related yarn breaks in 
                                                     LCF  

                                       given length 
 

 

                   -----------------------------------------------------
        95) Utilisation %   =  

                         Total number of objct. Yarn faults
 

 

                          removed by S.C from same length
                Worked hrs/Alloted hrs x Worked dr

        Bobbin running time  =
               --------------------------------------------------

                     Avg length in meters/ Speed in mpm
                 Alloted drums x 100  

   
















23      

24  
            AUTOCONER CALICULATIONS

             103)  RTI =  Ratio of retair ( the average number
 

 

                              of breaks/ bobbin
      100) S.E.F %  =  ( Spindle effciancy )

                No. of sucsess ful splicer - no. of bobbin
 

 

                           change
              Winding time ( WDTM) / Shift

   
                -------------------------------------  x 100             x 100

             104) MIS = Miss splicing% =
     Run time ( RTM) - CBF alaram down time

   
 

 

                      No. of doffs (NDOP)
 

 

                     ----------------------------  x 100
      101)  A.E.F.%  ( Actual effciancy)

                        No. of bobbin change
 

 

            105) LW% = Ratio fo yellow buttion%
                Winding time / Shift  

                     = No. of times yellow buttion activated
              ------------------------------  x 100

          -----------------------------------------------------x 100
                SFTM ( shift time )  

                          No. of splicings
 

 

   
      102) JOIY% = Avg. no. of splicings/ 1000

           106) RTM = Runtime minutes
                                                miles of yarn

   
            No. of splicings   

   
            ----------------------- x 100  

   
               Yarn winding length/ Shift

   








25      

26  
      106) SBC % = Ratio of bobbin change %

          111)  SDTM = Splice down time for caser
 

 

                   = Run time - Winding time
               =  No. of bobbins changes 

          112) AC/Y = Avg. no. of NEPcutts/100000 mts 
                  --------------------------------

   
              No. of bobbin changes +bNo.of yarn ct  

                  No. of yarn clearers defective cutts
 

 

          ------------------------------------------------- x 100000
      107) SCC% =  ( Ratio of yarn clearer cutts)

                     Winding length
 

 

         113) SC/Y = Avg. no. of slub cutts /100000 mts
           Additional cutts ratio  

   
          ---------------------------       x 100

                = No. of yarn clearence
     No. of bobbin changes +no. of yarn clg cuts   

                       Diffective cutts - Wdg length
 

 

                        ------------------------------------ x 100000
    108) SPCY = SPDL CUTS/LAC MTS

                           Shift ( all yarn)
            CCLY = CLEARER CUTS/LAC METERS

   
            NYCA  = No. of yarn ct alaram

        114) LC/Y  = Avg. no. of long thick placess cutts/
 

 

                            100000 mts
       109) NADM = No. of miss auto doffing

         115) No. of T defective clearer  =
 

 

                     Yarn alaram cutts 
        110)  AC/Y Avg . No of nep cutts/10000mts 

                     -------------------------  x 100000
       

                      Winding  length/ shift








27      

28  
      117) Drawing production/Del =

       120)  D/F Production/ Del/ 8 hrs =
 

 

                           0.625 x MPM X EFF/100
            0.069 x sliver hk  ( 35 mm frd )

   
            0.053 x Sliver hk ( 27 mm frd)

        121) NO. Of fibers in sliver cross section =
            0.050 x Sliver hk  ( 25.44 mm frd)

                  15000/ hank x mic
 

 

   
       118)  Riquired draft in ring spinning

        122) Simplex & Spinning productin/spdl/ 8 hrs
                

 

               =  7.2 x Spdl speed x Mc eff
                Count 18s to 44     4.5 sqr count

                   ------------------------------------
                Count 50s to 70     4.0 sqr count

                     TPI X Roving hk x 100000
                 Count 80s to 100  3.3 sqr count

       123) Doubling prod =  7.2 x spdl speed
 

 

                                    -----------------------   x eff
       119)  Actual hank =   

                                      tpi x resultan count 
                     8.33 x no. of yards  

   
                    --------------------------

        124) Blow room production = 
                     15.432 x Avg.wt in grams

   
 

 

                        8.9 x S x d     S = lap roller speed
        ( i.e lenear density in high production cards)

                       -------------------   D = Dia of lap roller
 

 

                        1000 x H        H = Hank of lap
       

   
















29      

30  
         CONVERSION FACTURES  

           126) Cone winding production = 
      125)

 

                              0.2835 x S/C = KGS
                 1 YARD     =       36 INCHES

                    S = WINDING SPEED  C = COUNT
                 1 Hank      =        840 yards

   
         1 Meter      =       1.094 yards

         127) Conversions for hanks to kilograms  =
  1 Kg           =       2.204 lbs

                Hanks x 0.4536
  1 Inch         =      2.54 cms

               -------------------------------------------------
                 1 inch         =     25.4 mm   

                 Sliver / roving/ count
  1 Lb           =   453.4 grams

          128)  Carding production = 0.855 X S/H
  1 Gram      =   15.4 grains

                    S = Doffer speed
  1 Yard       =  3 feets  

                     H = Hank of sliver
  1 Foot       =  12 inches

              Tension draft = 1.4
  1 Lb          -   16 ouncess

   
  1 Ounce    =  28.34 grains

       129) Linear density in high production card sliver
  1 Yard     =   0.91 meters

                  = 
  1 Meter    =  39.37 inchess

              Actual hank =  
 

 

                         8.33 x no. of yards
 

 

                       -------------------------------
 

 

                       15.432 x Avg weight in grams
       

   
















31      

32  
         127) Time to build a full bobbin =

       132)  Standard nep count = 
 

 

                 (Nep/ board x H.K X Card width cms) 
                 ( Length of yarn on bobbin )

   
                   ----------------------------------

        133) Can content in drawing =
                   (Length delevery per hour)

                      1.5  x Hight x Dia 2/ 1000
 

 

   
         128) Yarn breaking strength =

        134) Trumpet bore size = 
                  For karded yarn =  2000/ count

                         0.22 x sqr of grain per yard of sliver
                  For combed yarn = 2250/ count

   
 

 

       135) Twist contraction% =
         129) Density of yarn package =

                         (2.64 x T.M ) - 4.82
                 Net weight on yarn package

   
                 --------------------------------------

       136) Spinning limit =
                 Valume of yarn package

                 5315
 

 

  ----------------------------------------------------------------
       130 )  Tape width  =    

  Diameter of fiber  x Actual fiber/ fross section
               Face width of spindle wharve - 4 mm

   
 

 

       137) Uniformity ration =
       131) A/C Production = 0.283 x mts/ min/Ct

                     Mean fiber length/ upper hald mean lengt 
       

                            x 100
















33      

34  
       135)   expected  U% =  

          STATASTICAL FOURMULAS
                   100/ sqr of N  

   
          N =  No. of fibers in cross section

  140)  Q95%  =   
 

 

                         K = T X S.D./ sqr of N
               N =  Yarn denier/ Fiber denier

  T  = T value
            Yarn denier = 5315/ count

  SD = Standard deviation
 

 

  N = No. of samples
        136) Break draft =  ss back roller/ ss of mid

   
 

 

  141)  T  Value = 
       137) Main draft = ss of first roll./ss of mid roll

                    X1 - X2 sqr of N
 

 

                   -----------------------
        138) Total draft = ss of delevery roll /

                  sqr of SD1 +SD2  
                                   ss of feed roller

   T value more than 2.67 it is statastically
        139)  Comber production/day/ machine

                                 siginificant
 

 

   
                  0.0384 / 1000 x LSF( 100 - W)

  X1  X2  =  Mean values
 

 

   N =  Number tests
                  L = Lap weight  

  SD1  AND SD2  =  Standard deviations
                  S =  Nip/Minits  

   
                   F  = Feed/ Nip  

   
















35      

36  
              STATASTICAL FOURMULAS 

        144) Che sequare test  = 
 

 

                       ( A +B )/ (A - B) 2 = > 4.0
        142)   F  Test :-
 

   
                 Two cv values are to be compared 

       145) Power consumption =
                  is to be conduct  

                   HP X 0.746 X 3 SHIFTS X 8
 

 

                  --------------------------------------- x eff
                F  = S1 squar
 

                      Consumption of production/ mc
                       ---------------  

      146) T.F.O Production/ day / machine =
                       S2  squar
 

   
      F  is always greater than  1  

                    14.4 x Spdl rpm x eff x No. of drums x 3
 

 

                    -------------------------------------------------------
         143) Degree of freedom Caliculation per

                        TPI X COUNT X 1000
                 T  test   =
 

   
 

 

        The diffrence between variator drive and
       No. of samples  = 2  

            inverter drive  =
        No. of readings per each test  = 20

          Variator type machine mainly in spg. Motor
        Degree of freedom = 2(20-2) = 38

           rpm is fixed 
          You can see that  T value chart at 38 

      Inverter drive in this principle inverter varie the 
           degree of freedom  

           freequancy if frequancy is increased
       

                N = 120 X f/p  








37      

38  
              STATASTICAL FOURMULAS 

  146)  Ex   A mill having 150 breaks/ 1000spdl
 

 

          per hr in 60s count 
        145)    The hank of the drawing sliver for the

       After change of mixing  the level of 
                  department as whole would be

      breakage 220 per 1000spdl/ hr
 

 

       Has the change of mixing increased the
                   =  0.145 +/- 3SD/sqr of N

      breakege rate  ?
 

 

   
                 +/- 3 X 0.00145/sqr of 8 

    At present  O = 220   E = 150
                   =  0.145 +/- 0.0016  

   
                  Range = 01434 and 0.1466

        X2  = ( 220 - 150)2/150 = 4900/150 
       The hank 0.145 is statastically different for 

                          =  32.7
       the nominal hank 0.140  

  I degree of freedom = 3.87 it is statasti
 

 

                              cally significant
          APPLICATION OF X2( Che Squar ) Method

   
 

 

   
      146)    X2  Defined as ( O - E)2 /E

   
 

 

   
                O & E are the observed and expected

   
                  values
 

   
       

   
















39      

40  
              STATASTICAL FOURMULAS 

       STATASTICAL FOURMULAS
 

 

   
         148)  Application of   F test

  149)  SNAP STUDY :
                 Card hank cv%  = 4.0  

        A round inside the department to list
                 Taking some precations cv% reduced

       the number of machines stopped due to
                 3.5%  Card hk 0.200 No. of readings 

      various causes is known as snap study
                  = 40  is it statastically significant

   
                     or Not ?
 

   S = 1/100 X sqr of P(100-P)/sqr of N X rounds
            SD1 = CV1 X Mean /100 = 4 x 0.2/100

   
                       =  0.008
 

  S = SD of the estimate
          SD2 =   CV2 X Mean/100 = 3.5x0.2/100

  P  =  Efficancy of the department
                      =  0.007
 

  N = No. of machines observed
 

 

   
              SD1 sqr/SD2 sqr = 1.31  

   S = 1/100 X sqr of 91 x 9/sqr of 30+60
 

 

                       =  0.67
            The value should be grater than = 1.53

   
 

 

   
 

 

   
 

 

   
       

   
















41      

42  
              STATASTICAL FOURMULAS 

             151)  Fiber to yarn relation ship =
        150)

 

                       Lea C.S.P =
        Department      Nature of problem   Test to

                165 sqr of FQI +590 - 13C  For karded count
       Blow room       Fiber repture            C.D

            152) Lea C.S.P
                             Cleaning eff%           C.D

                      165 sqr of FQI +590 -13C (1+W/100)
                            Neps generation         X2

                          for combed counts
       Carding           Fiber repture            C.D

   
                             Cleaning eff             C.D.

     Here 
                            Nep generation           X2

   
                            Cv% Hank               F test

      FQI = LSM/F
                         M/c Stoppage          Snap test

  L = Mean length
     Drawing           S.L Hank                CV test

  S = Fiber bundle strength
                          S.L. Breaks             F test

  f = Micronaire value
                         Cv of SL Hk               F test

  C= Yarn count
                       M/c Stoppage              Snap test

  W = % of comber noil
 

 

   
        Simplex    Str in roving      Analysis of roving

   
                        Mean hk of roving  CV  test

   
                        End Breaks           X2 TEST

   
       

   








43      

44  
        153)  Time of build a full bobbin

                        SNAPSTUDY TEST
                  Length of yarn on bobbin

            
                  -----------------------------------

         A  Round inside the department  to list the
                   Length delevered per hr.

          no. of machines stopped due to various 
          154)  Diameter of fiber in microns =

          causes is known as snap study
                   2000 x (sqr X /Y X 9000)

   
            X  = Fiber diameter  

         >  Expected effciancy of snap study = 95
            y = Fiber specific gravity  

         > Observed efficancy = 91
 

 

         > No. of rounds =         31
       155) Uniformity ration =   

         > No. of ring frames = 60
                 Mean fiber length   

   
                ------------------------  x 100

               S = 1/100 X sqr of P(100-P)/sqr of N X Rounds
                  Upper half mean length

   
       156)  Opend end spinnign TPM =

   
                   Delevery speed mpm / Rotor rpm

              S  = 1/100 X sqr of 91 x 9
 

 

                                 ------------------   =  0.67
       157) OE  Production in kgs/ hr/ Rotor

                                   sqr of 30 x 60
                 = Delevery speed mpm x tex x 60xeff

   
                    -----------------------------------------------

   
                          1000 x TPM  

   
















45      

46  
        163) 
 

    MONETARING DATA DETAILS
                 N =  Diameter limit/ Neps

   
                 DS = Diameter limit for short faults

   
                 LS = Limit for short fault length

         Total yarn cutts =  Total yarn faults
                 DL = Diameter limit for long faults

         Short off cnt cutts =  yarn count deviation
                         and double yarn  

                                        Short count range
                LL = Limit for long fault length

   
                -D = Limit of the diameter decreases

          Off count cutts =  Yarn count deviation cutts
                       for the faults   

   
               -L = Limt for thin placess length

           SFI/D Cutts  = Surface index
 

 

           F cutts  = Forgin matter cutts
     VCV    = Varable CV channel  

           P cutts  = Synthatic forgin matter
          Ex :

 

           Short cluster cutts =  Short faults cluster cutts
                 Laboratory prcticess where check

          Long cluster cutts = Long fault cluster cutts
       length of 400 or  1000 meters for CV

          F cluster cutts = Forgin matter cluster cutts
       determination 
 

          VCV Cutts = Cuts resulting from a deviation of the
          In vcv the check length of cv can be varied 

                             VCV Value from the mean value
     contionously between 1 and 50 meters

   
     Specific detection fo diameter variance

            D Bunch cutts = Delayed cutts caused by a
       

                                    Bunch of similar running faults
















47      

48  
                     mixing  

            NEP AND FIBER DAMAGES
       Longer the finer cotton with high trash content 

                           Carding
       are more prone to neppiness than shorter

  1. Damaged and worn wire points and depositi
       and courser ones very fine and long cottns

     on of waxy material on the wire surface 
       are found to break during processing and

    are potencial cause of nesp
       thus create the nep formation

   
 

 

  2. Higher Lickren speeds remove the more 
           Micronaire value greater than 3.5 and 

      motes and fly waste thus reduce the seed
           maturity co effciant about 0.8 are

     cot neps 
           likely to reduce nep formation

  3. Higher cylinder speed of the order of 460 rpm
 

 

      combined with high flats speed 15 to 20 cms
 

 

      per minute result a 
         The addition of excissive shoft waste in

   
         Mixing will create yarn that are more neppy

  4) Modren high production cards  the direction
         improper mixinf of long and short cottons

     of rotation of flats is made opposite to rotation
         widley different level will produce neps

  of the cylinder this helps to reduce the neps
 

 

  Fres flats are presented to the fibers that is 
         Cottn with widly different trash levels will

  coming out of the cylinder at the tranceper point
         produce more nep   

   
       

   








49      

50  
         NEP AND FIBER DAMAGES

      NEP FORMATION IN BLOW ROOM
 

 

   
      Fiber dmages refer to reduction in fiber length 

  1. Cotton with too high or low moisture
     due to repture of repture of fibers during process

  2. Extreamly fine cotton with high trash
      The diffrence must be lower than 4.0 % 

  3. Reprocessing of laps and soft waste mix
 

 

  4. Rough blend blades blent point beater pins
      Length between the length of feed and delevery

  5.Damaged grid bars
     is an indication fo fiber repture

  6.Narrow setting between the feed rollers or 
 

 

     pedal and beater
      The chancess of fiber repture in the department

  7.Long curvecd aand U bends in conveyaer pipe 
 

 

    line
      1. Blow room 
 

  8.Inproperate ratio of fan to beater speed
 

 

  9.Excissve application of tint improper dreying
          The number of beating points  used are

    of tint before processing
         Not more than  3 to 5 depending upon the

  10.Wider setting between stripping rail and beater
        level of trash in the mixing

  11.Slak or too high fan belts
 

 

  12. Too high or low beater speeds
     2.  Fiber damage main area lickren and feed

  13.Air leakege and obstruction of cotton through
          plate to lickren setting  it is suggested tnat

      pipe line
          20 to 25 thous    

  14. More number of beater than the requirement
















51      

52  
                             CARDING  

                        CARDING
   High card sliver variation :  

  Nep formation in cards :
         1. Too hihg a tension draft and stretch of web

   6.  Jammed wire in doffer
          2. Variation in setting between back plate

  7.  Uneven flat setting
              and cylinder
 

  8. Cylinder and flats or Doffer set too wide
         3. Variation in flats speed between cards

  9. Too much space between lickren cover and 
             peocessing the same material

        feed plate
        4. Damaged front and back plate

  10.Undercasing chocked with fly
        5. Size of the coiler trumpet not adjested

  11.Cylinder doffer not stripped properly after 
            to hank
 

       lapping
       6. Feed roller weighing not acting properly

  12. Dirty or chocked undercasing
       7. Diffrence in draft between cards

  13. Rough surface in front and back plate
 

 

  14.Insuffciant stripping
         Nep formation in carding :-

  15.Higher doffer speed
         

 

  16. Too fine immeture or damp cotton
          1. Lap too heavy coler settings of selvedges

   
          2.Wider back plate to cylinder settings

   
          3. High lickren speed  

   
          4. Lickren set too far form feed plate

   
          5. Blunt lickren wire or dull flats

   
















53      

54  
                            COMBER  

   
         High combeer sliver variation :_

   
 

 

   
          1. Diffrence in waste extraction between

   
              heads
 

   
          2. Variation in the settings between back

   
               detaching roller and nipper

   
          3. Improper cam setting depending upon the

   
              staple length of the material

   
         4. Unicomb chocked with sead cots or

   
             immeture cotton  

   
        5. Variation in detaching roller diameter

   
        6. Improper timing of tomp comb

   
        7. Poor condition of sadles and top detaching

   
             roller breakets  

   
       8. Top comb touching the back detaching 

   
           roller
 

   
 

 

   
      9. Improper pressure on nippers jaws

   
       

   
















55      

56  
                  DRAW FRAME  

              DRAW FRAME
 

 

   
     High drawing sliver variation:_

  ROLLER LAPPINGS IN DF
          1. Improper pressure on top rollers

   
          2. Improper roller coverings ecentric top

     1. Incorect setting of top roller clearers or
              and bottom rollers  

         worn clearers
         3. Incorrect trumpet size  

   
         4. Improperly meshed or wrong gear wheels

   
         5. Excessive creel draft and web tension draft

   
         6. Stopmotion ineffctive function

   
         7. Incorrect sliver guide setting at feed

   
        8. Good fibers drawn due to high air pressure

   
        9. Variation in top roller diameter

   
        10. Warn out top rollers end bushess

   End breaks in drawing :-
        11. Improper settings at sliver conditioning

      1. Double sliver in feed
              plate at creel
 

      2. Improper peicing at back feed
        12. Imnproper settings in sliver tension

      3. Incorrect trumpet size
 

 

      4. Cotton having excissive honey diew
 

 

      5. Damaged surface in drafting rollers
       

      6. Deeply meshed gears
















57      

58  
  SIMPLEX PROBLEMS

                  SIMPLEX PROBLEMS
 

 

   
       Hank variation in roving :

  Stretch at simplex :-
          1. Too high a break draft or total draft

   
          2. Improper selection fo condencer guide

     1. Improper winding on ratchet wheel
          3. Vibration fo roving bobbinon the slat

      2. Improper starting position of cone drum belt
          4. Streching of sliver at feed

      3. Improper intial bobbin layer and incorect
          5. High variation in bare bobbin diameter

          build of layer
          6. Indaquate top arm pressure

     4. Variation in bare bobbin diameter
          7. Incorrect movement of cone drum belt

     5. Improper shifting of cone drum belt
          8. Irregular are closed aprons

   
          9. Warn damaged or improperly meshed

   
                gears and bearings  

   
         10. Jurkey motion of bobbin rail

   
 

 

   
        Roller lappings :_  

   
           1. Damaged surface in the top roller cots

   
           2. Use of varnished in the top roller cots

   
           3. Damaged aprons are condenser guides

   
           4. Too wide settings at the back zone

   








59      

60  
      SIMPLEX PROBLEMS

        END BREAKS IN SIMPLEX
        SLUBS :-
 

      6. Indaquate top roller pressure
           1.Excissive end breaks  

      7. Vibration in flyers
           2. Wate accumalation at creels clearer

      8. Use of narrow spacers
                and flyers
 

      9. Damaged top edge of the cam
          3. Improper choice of spacer

  10. Loose spindle and bobbin shaft drive wheels
          4. Use of lower break draft

  11. Broken or damaged teeth in draft gears
          5. Closer setting at back zone

   
         6. Absence of positively driven top clearers

  12. Improper cleaning of draft zone
         7. Damaged or obsence of top and bottom

   
             roller cloth
 

  13. Damaged can springs and D shape cans
 

 

   
                   END BREAAKS IN SPX  

  14. Lashing of ends
            1. Incorrect choice of creel draft

   
            2. Sliver entanglement at feed

  15.  Undrafting  ends
            3. Improper peicing at back feed

   
            4. Too wide a back zone setting

  16.  Warn out false twisters
            5. Looser or broken top and bottom

   
                apron
 

   
       

   
















61      

62  
                  RING SPINNING  

  BETWEEN BOBBIN COUNT VARIATION
     

 

   
       Uneven yarn :_
 

  1. Excive variation in tuft size
 

 

  2. Use of three passage in post comber
            1. Indaquate pressure on top rollers

  3. Frequent changes in penion df and comb
            2. Damaged or worn rings

  4. Improper roller space setting or finisher passage
            3. Heavy or lighter travellers

       settings colser than the breaker passage in
            4. Defective and worn gears

       drawing
            5. Colse setting of traveller clearer

  5. Excive stretch in roving
            6. Non alignement of aprons

  6. Lower twist in roving
            7. Improper top roller settings

  7. Variation in bare bobbin diameter   
            8. Lappet and spindle setting not correct

  8.  Row to row diffrence in roving hank
            9. Bottom roller ecentric  

  Spindle vibrations and ring frame vibrations
            10. Too wide or too close back zone setting

  9 .High variation in relative humidity
             11. Improper use of break draft

  10. Variation in top roller pressure
             12. Broken or damaged roving guide

   
            13. Obstruction or vibration in the 

   
                 movement of roving travers

   
          

 

   
       

   








63      

64  
      WITHIN BOBBIN COUNT VARIATION

    THICK AND THIN PLACESS IN YARN
     

 

   
      1. High card sliver and comber sliver u%

         1. High fiber length variation
      2. Roller slippage in drawing

         2. Poor carding or combing
      3. Excive web tension draft in drawing

         3. Uneven roving excive forgin matter in yarn
      4. Ratching in roving  

         4. Ecentric top and bottom rollers
      5. High tension draft or improper coils in roving

         5. Insufficant pressure on top rollers
      6. Use of long seperater plates at high 

         6. Wider settings between aprons broken aprons
         spindle speeds
 

         7. Too high a draft in ring frame
      7. Low humidity levels  

         8. Improper setting of of tnesor bar
      Cracks in the yarn :_  

          9  Worn rings 
      1. Mixing cotton diffreing widely  in staple 

        10. Too close setting between traveller clearer
          length 
 

              and traveller
      2. Too close  setting in ring spinning

        11. Damaged top and bottom rollers
      3. Worn or unbuffed top rollers

        12. Jurkey motion of ring rail
      4. Improper stopping and starting of ring frames

        13. Worn out travellers
      5. Loese top and bottom aprons

        14. Excive fly lebaration in ring frames
      6. Inadequate top roller pressure

15  
       7. Incorrect apron nip opening

   
       

   








65      

66  
                    SLUBS IN THE YARN

        7. Spindle out of center with ring and lappet
     

 

        8. Cracked and worn bobbins
          1. Excive short fibers in the mixing

        9. Improper fit of bobbins
          2. Inadaquate indivedualisation in cards

        10. Incorrect bobbin diameter
          3. Improper peicing in roving

        11. Worn rings
          4. Variation in top roller pressure in ring fr

        12. Traveller clearer set close
          5. Improper pecing of roving

        13. Improper fit of bobbins
          6.Bad peicing with too long over lapping

        14. Worn rings
          7. Too wide setting between apron and

        15. Traveller clearer too close setting
               front roller
 

        16. Too high a draft
 

 

        17. Break draft not optimum
                  END BREAKS IN RING SPINNIG

        18. Loose and worn aprons
 

 

        19. Incorrect shore hardness of top rollers
        1. Dmaged skeewers and clogged bobbin 

        20. Insufficant pressure on top rollers
            holder
 

        21. Incorrect apron nip opening and setting
       2. Jerkey motion of ring rail

        22. Excessive twist in roving
       3. Vibration or ecentric spindle drive

        23. Lack of control of temparature nad humidity
       4. Slak spindle tapes  

   
       5. Worn gear wheel and deep messhing gears

   
       6. Choking and improper alignment of pnumafil

   








67      

68  
                 HIGH YARN HARINESS

                       CLASSIMATE FAULTS
     

 

            Factures influancing the classimate faults 
        1. Mixing cotton with vide variation 

   
        2. Excive short fiber content in mixing

   
        3. Use of excive draft in spinning & prep

        1.   25% of the classimate faults are influanced
        4. High spindle speed  

              by card process ( A1 B1 A2 B2 )
        5. Incorrect choice of travellers

   
        6. Cutt in lappet hook  

   
        7. Spindle lift
 

        2. 20% of faults inflyanced by Comber process 
       8. Ballon formation  

             ( E F G  faults )
      10. Worn rings
 

    
      11. Ring rail jurkey motion

       3.  30% of faults are influanced by the ring 
      12. Worn out travellers  

             frame process
      13. Improper bowe hight in traveeller

               ( DRAFTING FAULTS )
      14. Traveller pulling angle  

   
      15. Too close traveller clearer setting

   
      16. Low tpi at ring spinning  

   
  

 

        4. 30% of faults influanced by simplex and 
 

 

               material handling ( Thin faults)
       

   






   






   






   






   






   






   






   
















69      

70  
            CLASSIMATE FAULTS  

                   CLASSIMATE FAULTS
     

 

              Long thick faults :-
      Short thick faults :-  

         1. Presence of un opened roving in the blow room
 

 

             lap or card sliver
      1. Presence of large ammount of trash high

         2. Folding or over lapping the blowroom layers 
         praportion of seed cot prigments

             while feeding  to the lickren of the cards 
     2. Use of low micronaire cotton with high

         3. Use of improper settings in drawing
         level of humidity  

         4. Too low a web or creel draft in drawing
     3. Use of cotton containing high proportion

             resulting improper drafting
         of shart fibers
 

         5. Improper seating of floting and fixed condencers
     4. Excessive fiber entanglements

         6. Improper peicing in speed frame and ring frame
     5. Damaged wire points cylinder doffer

         7. Presence of lashing of excessive end breaks 
     6. Absence of top roller clearers in simplex

             in speed frame
    7. Use of broken and damaged surface of 

        8. Too close a setting between traveller clearer 
         the floting condencers  

             and traveller in ring frame
    8 Use of too wide or narrow settings in roving

        9. Use of narrow spacers in ring frames resulting
       and spinning machines  

            in undrafted ends
    9 use of improper spacers in speed frame 

       10. Use of fibers having excessive variation in 
       and ring frames
 

             fibers length resulting in formation of crakers
       

            in the yarn.








71      

72  
           CLASSIMATE FAULTS  

        Method of reducing classimate faults
              Long thin faults :-  

   
       1.Excissive incedence of web falling

            While preparing the mixing  wide variation
       2. Too high a break/ creel / web draft in 

            in length should be avoid
            draw frames
 

   
      3. Excessive variation in top roller pressure

          2. Treatment and selection of beaters in blow
      4. Looses top roller end bushes in draw frame

              room could be decided depending upon the
      5. Distrubence for the free rotation of creel

             type of cotton to used avoid entanglements
          callender rollers in draframe

   
     6. Sliver stretch  of creel in speed frames

         3. Sytsamatic mentinence schedules should be 
         due to high a creel draft  

             followed
     7. Excisive roving stretch due to improper

   
         function of builder mechanisiom

        4. Keep vire points condition should be followed
     8. Use fo empty roving bobbin In speed frame  

   
         with a wide variation in bare bobbin dia

        5. Higher cylinder and flats speed may be emplyed
     9. Sliver spliting in speed frame while drafting

   
     10. Use of ring tubes with improper fit on the

        6. Higher noil extraction during combing helps for
          spindles
 

             better removal of fiber cluster and immeture
 

 

             fibers in lumps
       

   
















73      

74  
           CONTROLLING OF CLASSIMATE

           SPECTOGRAMM ANALYSIS
                   FAULTS
 

   
         1. Break draft, creel draft in dra frame

           IDENTIFICATION OF DEFECTIVE PART
             speed frame should be maintedas per

       FROM A GIVEN GEAR PLAN
              standards
 

   
 

 

                       GEAR DIAGRAM
         2. The Condition and seating aprons , Floting

   
              condencers Roving guidesShould be

   
              maintained satisfactorily

   
 

 

   
         3. The setting between drafting rollers in

   
             preparatory and spinning machine

   
             should be kept as per the standard 

   
        4. Over head clearers bottom roller clearers

   
            should be used when ever necessery

   
 

 

   
       5. Better maintinence of machenery house 

               
          keeping Draft zone cleaning AND to avoid 

             WEAVE LENGTH OF THE PEAK IS = 3.0 CMS
          fiber accumalation in lappet and traveler

   
         clearer    

   
















75      

76  
                   SPECTO GRAM ANALYSIS

                   SPECTO GRAM ANALYSIS
 

 

   
       Weave length of the faults form the

           Defective component identification from
       different parts :
 

                    ROTATING SPEEDS
       

 

         
        85T gear front roller = 22/7 x 2.54 cm = 8 cm

              Whavelength in cms =
        

 

          
       160t Gear =  22/7 x 160/85  = 15 cms

                   Delevery speed in cms/ min (v)
 

 

                  ---------------------------------------------
       32T Gear 140T Gear  = 15 x 32/16 = 3 cms 

                    Frequancy in rpm ( f)
 

 

   
      100T Gear 35T Gear =  3 x 100/140   

                  Therefore   f  = v/lamida 
                                      =  2 cms  

               
 

 

              euating the rotating part ( wheel or roller)
       Conclusion :
 

                whose rpm matches with this  "f" value
                    32T Gear or 140T Gear or the 

                the defective part can be identified
              connecting shaft is the defective part

   
 

 

   
 

 

   
       

   
















77      

78  
                 SPECTOGRAMM ANALYSIS - D40 

               LR SB - 851 PEAKS ANALYSIS
 

 

   
        1 Meter      =   Back top roller or can

         10  CMS =  Top roller out of round
         90 Cms     =   Coiler    

   
         80 Cms     = Back bottom roller

          12 CMS  = Top roller with cutts
        50 Cms   = CP value or middle top roller

            6 Cms  = Ovell shaped top rollers
        12 Cms   = Front top roller  

          68 Cms = Top roller with one spot  
        10 Cms  = Front bottom roller

                          Caused by pressure on stopped
        40 Cms  =  Middle bottom roller

                           toproller over an extend period of time
        17 Cms   = Delevery roller  

           11.3 Cms  = 1st bottom roller
 

 

            3 Meters = Problem with scanning roller drive
          LRSB - 851 PEAKS ANALYSIS 

            50 Cms = Sliver funnel 
 

 

            17 Cms = Callender roller or callender roller disk
         38  Cms  = Breaak draft roller setting too wide

            85 Cms = Dort accumalation on the belt
         50 Cms = Main draft roller setting too narrow

            98 Cms = Distrubued sliver deposition
         8  Cms = Main draft roller setting too wide or

   
                        fiber to fiber friction is too high

   
      Zig zag peaks = Top roller pressure not suffciant

   
 

 

   
        12 Cms =  1st bottom roller drive problem

   
 






79      

80  
          LF 1400A  PEAKS CALICULATIONS

                COMBER PEAKS CALICULATIONS
 

 

             1. COLER CALLNDER ROLLER  1. Coiler callender roller or 28t pully  = 18.6 mm 
         7 Cms =   50T Wheel  

  2.79.5 pully or 40t     =   26.6 mm
        10 Cms = Front roller  

  3. 50 Pully  =  16.8 mm
        12.5 Cms = 80 T Wheel  

  4. 37T or 20T   = 24.66 mm
         8.0 Cms = Draft change gear

  5. Vertical shaft Wobbling = 29.6 mm
         9.0 Cms = Front bottom roller

  6. 40t or 25 t =  26.65 mm
 

 

  7. B wheel or 45t or 72T = 47.99 mm
         14.0 cms = Spindle wharve shaft

  8. Front bottom roller = 12 mm
         15.0 Cms = bobbin gear  

  9. A Wheel 20T Wheel 35T Wheel X A/B
         16.0 Cms = Bobbin faults  

  10. Front top roller = 15.423 mm
         17.0 Cms = carrier wheel

  11. Middle bottom roller = 28t or 
         18.0 Cms = carrier wheel  

          Drafting whave = 3358.74 A(BX C)
          19.0 Cms = carrier wheel  

  12.Back bottom roller  /Drafting wharve = 120x a/b
          28.0 Cms Apron Top  

  13. 44T/22T/ = 30.16 X A/B
          60.0 Second bottom roller

  14. Machine Pully /29T/40T = 1206.48 X A(BXT)
          65.0 Cms = Second top roller

  15. 143T / PEICING PEAK = 5849.2 X A(BXT)
          70. Second top roller  

  16.Main motor pully = 4.605 x A X G (BX T)
          95.0 to 1.0 meters = 3rd bottom roller

  17. 138T/35T = 4162.35 X (A/BX T)
          110 = third top roller  130 = 3rd drive wheel

  20. Take of roller = 16696.96 x A (B XT)
















81      

82  
          PREACATIONS AT T.F.O

                         PREACATIONS AT T.F.O
 

 

   
        1. Clean the seperators and capsules

      11   Every time hard waste should be put in the
            whenever put feed package into pot

             pecer bag
       2. Feed the feed package into one unwinding

       12. Lock the drop wire at the time of knotting
          direction
 

       13. When ever the machine stopped lift the drop wire
      3. Do not feed the rejected cheeses

             assembly through handle rod
      4. Particular condition should be followed

   
      5. At the time of thread cut  knot under the pig tail

       14.  Clean the flyer brush for every knot
          rod release the break and arrange the

   
          delevery package to the drum

       15. Do not keep any article inbetween the free
      6.  Every yarn cutt clean the capsule and

             takeup roller and take uproller
           set it right
 

   
      7. All the pots should be infront of the red dots

        16. Feed the feed packages according to
      8. T.V Number should equal to all spindles

              instructions
      9.Observe the ballon for all spindles if 

   
         ballon is not formed stop the package and 

         
         remove the untwisted yarn

   
     10. Every end cut delevery package should be

   
          lifted automatically  

   








83      

84  
        ANALYSIS OF QUALITY PROBLEMS 

       Nep Generation Mechanical process
                 IN COTTON SPINNING  

   
 

 

          1. Damaged blent beaters and spikes
       Thick and thin generation :-

          2. Damaged bent clothings
            1. More short fiber in raw mateerrrial

          3. Poor condition of bushes in combers
             2. High length variation in raw meterial

          4. Rough damaged of grid bars and cover factures
 

 

         5. Toomaney pipe lines with bending in B/R
        At Drafting stage :-  

         6. Rough and damaged surface of fan blades
 

 

   
          1. Roller setting of finisher drawing

              CLASSIMATE FAULTS 
           2. Draft applied beyond the capacity

   
 

 

    RAW MATERIAL FAULTS  ( A & B ) Type
       In process stage :-  

      
 

 

      1. Large ammount of trash in cotton
        1. Quality of carding  

       2. More sead fragmentation in cotton
         2. Quality of combing  

       3. Low micronire
     Nep generation :-  

       4. Immaturity of cotton
       1. Low mic cotton  

       5. More short fiber content of cotton
        2. Variation in moisture content in cotton

   
       

   








85      

86  
      CLASSIMATE FAULTS ANALYSIS

              CLASSIMATE FAULTS ANALYSIS
 

 

             LONG THICK FAULTS :-
        In process :-
 

               1. More soft waste in mixing
            1. Insuffciant nep removal at carding

               2. Excissive short fiber in mixing
                and combing  

               3. Poor control of humidity
            2. Higher total draft in spinning

               4. Improper peicing of drawing
            3. Fly and hariness in spinning

               5. Low top roller pressure at drawing
            4. Improper spacers in spinning

               6. Roller lapping at speed frame
 

 

               7. Lashes of ends at speed frame
        SLUBS :-
 

  Low top arm pressure in speed frame
           1. Accumalation of fluff  

               8. Low break draft in speed frame
           2. Improper cleaning of clearer rollers

                9. Too wide spacer in speed frame
           3. Broken tooth of gear wheels improper

               10. Poor house keeping in spinning
                messing of wheels  

                11. Hard rovong peicing
          4. Damaged roller covering

                12. Low spinning peicing
          5. Poor carding due to worn out wire

                13. Low break draft at spinning
          6. Too wide front zone setting 

                14. Low top arm pressure in spinning
          7. Improper spacer  

                15. High hariness in yarn
          8. Indaquate top arm pressure

   
       

   








87      

88  
           CLASSIMATE FAULTS ANALYSIS

          CLASSIMATE FAULTS ANALYSIS
 

 

   
        LONG THIN FAULTS :-  

         LONG THIN FAULTS :-
          1. More soft waste in spinning

   
          2. Mic value range more than 10% in mix

        17. Low Tm at speed frame
          3. Web falling in carding  

        18. Speed frame bobbin variation/Play
          4. Too low and too high tension draft

        19. More break draft in spinning and  simplex
          5. Chowking of under casing

        20. Wide back zone setting in spinning and spx
          6. Static charge generation in PV and PC

   
          7. Too narrow trumpet carding/drawing

        21. Creel strtetch criss cross in ring frame
          8. Wraong peicing practices at all stages

   
          9. Missing of sliver infective stopmotions

        22. Wide back zone in speed frame and
         10.Sliver rubbibg at each and inside cans

              carding frame
         11. Distrubunce in creel  

       23. Excessive tension weight in winding
         12. Sliver splittings  

   
         13. Speed frame stretch  

   
         14. Flyer leg chouking  

   
         15. Inlet condnecer chouking

   
          16. Improper selection of sliver condencer

   
       

   








89      

90  
         POSSIBLE CAUSES FOR CLASSIMATE

                 CLASSIFICATION OF CLASSIMATE 
                              FAULTS   

                               FAULTS
      1. SPACERS   -            A4 ,B2, C2            

              OBJCT. FAULTS
      2. SPUN IN FLY  - B4,C4,C3,D3,D4

  A4         B4        C4           D4
      3. CAGE SETTING - B4,C4,C3,D3,D4

  A3         B3        C3           D3
      4. FLY & HARINESS -  A, B, C.  

  A2         B2        C2           D2
      5. FORGIN MATTER  - A3 +A4

  A1         B1        C1           D1
      6. FLY AT TRAVELLER - A3,A4

     RAW MWTERIAL FAULTS
      7. RING FRAME PEICING - C3 ,C4 

  A4         B4        C4           D4
      8. FLY IN DRAWING - B4,C4,C3,D3,D4

  A3         B3        C3           D3
      9. RING FRAME APRONS - B2, C2

  A2         B2        C2           D2
     10. SPEED FRAME STRETCH - H1

  A1         B1        C1           D1
     11. SPEED FRAME APRONS     E

  DRAFTING FAULTS
     12. SPEED FRAME DRAFTING - C3,C4,D2.D3

  A4         B4        C4           D4
                                        D4  

  A3         B3        C3           D3
     13. MORE TRASH IN MIX - B & C

  A2         B2        C2           D2
     14. FUSED FIBERS - B3,C2,C3  

  A1         B1        C1           D1
 

 

   
 

 

   
       

   














                   REASON WISE ANALYSIS 






                    FOR CLASSIMATE FAULTS
91      

92  
                    FOR CLASSIMATE FAULTS

              A4 +400%  0.10 TO 1.0 cms 
 

 

               1. High ring frame speed
             A1  +100%  0.10 to 1.0 cms length

                2. Loose fly
                   1. Raw material  

                3. High forgion matter
                   2. Low mic
 

                4. Type of spacers
                   3. Immature fiber  

            B1  +b100% 1.0 TO 2.0 CMS  Length
                   4. Insuffciant nep removal

  1. Raw meterial
                   5. High ring frame speed

             2. High ring frame speed  2. High ring frame speed
           A2     + 150%  0.10 to 1.0 cms length

   B2  +150%  1.0 to 2.0 cms Length
       1. Raw meterial  

   1. High ring frame speed
       2. Low mic  

   2. Loese spun in fly
       3. Immature fiber

  3. Setting of spacer
       4. Insuffciant nep removal

  4. Piecing of faults
       5. High ring frame speed

   5. Cracks in spinning aprons
       6. Spun in fly  

  6. Excissive trash
         A3     + 250%  0.10 TO 1.0 CMS Length

   
                    1. Raw material  

   
                     2. High ring frame speed

   
                     3. Fly at travel  



                     4. Spun in fly & Forgion matter











                   REASON WISE ANALYSIS 

                   REASON WISE ANALYSIS 
                    FOR CLASSIMATE FAULTS

                    FOR CLASSIMATE FAULTS
          B3 +250% 1.0 TO 2.0 CMS Length

   
                1. High ring frame speed

   C3 +250%  2.0 TO 4.0 Cms
                2. Loose fly
 

    1. High ring frame speed
                3. Spun in fly  

    2. Drafting faults
                4. Piecing faults   

    3. Piecing faults
        B4 +400 % 1.0 TO 2.0 cms   Length

   4. Spun in fly
               1. High ring frame speed

  C4 +400% 2.0 TO 4.0 CMS Length
                2. Loose fly  

  1. High ring frame speed
                3. Spun in fly  

  2. Drafting faults
                4. Long fibers and narrow guage setting

  3. Long fibers & narrow guage setting
                5. Tight guage setting

  4. loose fly
       C1 +100%  2.0 TO 4.0 CMS Length

   D1 +100% 4.0 to 8.0 cms length
  1. Excessive trash   

  1. Drafting faults
  2. Drafting faults  

   D2  +150% 4.0 to 8.0 cms length
       C2   + 250% 2.0 to 4.0 Cms length

   1. Drafting faults & long piecings
                 1. High ring frame speed

  D3  +250% 4.0 TO 8.0 CMS
                  2. Drafting faults  

  1. Drafting faults
                  3. Piecing & spun in fly

  2. Long fibers
       

  3. Narrow guage length








94      

95  
           D4 +400%  4.0 TO 8.0 cms length

             G  +100% 8.0 TO 32.0 cms length
                 1. Drafting faults  

                 1. Worn out rings in ring frame
                  2. Long fibers  

                 2. Incorrect setting and more breakeges 
                  3. Narrow guage length

                    in draframe
                  4. Tight guage settings

                3. Very high hariness
 

 

                4. Improper mentinence of spinning machines
            E   +100% 4.0 TO 8.0 CMS Length

               5. Poor air conditioning control humidity
                    1. Incorrect setting at draw frame

                    and air return
                     2. More piecings at drawings

              H1 -30% 8.0 TO 32.0 cms  length
           F +45% 4.0 to 8.0 cms  

                   1. Stretch of roving at speed frame
                   1. Worn out rings in ring spinning

                   2. Draframe settings and mentinence
                    2. Inncorrect setting and more

                   3. High brekege at drawing and speed 
                         sliver breaks in speed frame

              H2 - 45%  8.0 TO 32.0 cms
                   3. Very high hariness  

                  1. Sliver splittings at speed frame
                   4. Improper mentinence of spinning 

                   2. Creel stretch at ring frame
                   5. Poor house keeping

                   3. Settings and speed in R/F and speed 
                   6. Poor conditioning humidity

       I1 & I2   ( - 45% 32 cms   - 70% 32 cms above )
                           and return air  

                High drafting whaves
 

 

                 Seperation of meterial
       

   








           CV% CONTROL IN PREPARATORY  

   
                           PROCESS  

     CONTROLLING OF COUNT CV% IN PREP
               Comber :-
 

        
                 Use 26 mm detaching rollers

6 Avoid back bottom roller lappings
              Drawing :  When ever lapping occures 

         7. Check correct size of condencers no. of
                             remove sliver from the can

              foldings
               CAN :-  1. Can content must be optimum

         8. Use lesser break draft/ less cv% correct nose
                            2. Coiling must be proper

             bar setting
                           3. Gap between sliver and can

        9.  Trail with close bottom roller setting in 
                           ptimum to avoid damage sliver

             cotton optimum spacer
            Speed frame :-  

        10. Stretch at speed frame  should be less
                     1. Variation in top ar load should be

              check stretch at intial 1/4th 1/2 and full
                          minimum  

        11. Adjest shifting of belt / ratchet movement
                     2. Check round as both sides of


 
                         top rollers adjest evenly by tilting

        12. Leave spindle idle in case of more breaks
                         the saddel   


 
                   3. Check traverse for sliver  run through

         13. Avoid sliver splittings at creel and delevery
                       center cots and aprons


 
                   4. Use low tension cradel springs to 

        14. Maintian same creel draft in all draw frames
                        avoid lesser load on front top 


 
                        rolleer    

         15. Crsiis crossing of sliver movement to be avoid








           CV% CONTROL IN RING SPINNING

                 ADOPTION MESURES TO CONTROL
          1. Bobbin holder rotation should be 

                      COUNT CV% IN PROCESS
              proper
 

   Mixing :-
          2. Criss crossing of roving should be

         1. Adopt bale management tequnic
               avoid
 

         2. Bale openeing  done properly in such a way
         3.Creel high must be optimum -3 to bobbin 

          then tuft shouls be as less as possible 25 to 50
            from top arm
 

         3. Limit no. of bales to 10/ Mixing
        4. Group cv% must be checked

         4. Lay sandwitch mixing by drawing correspon
        5. Check for the balloning at ring frame to 

             ding ammount from each bale
            avoid clashing with seperator

         5. Allow the mixing from 24 hrs conditioning
       6. Check proper filment of ring frame tube

               for regain moisture
        7. Roving path should not touch bobbin

         6. 2.5% span length variation between lots should
        8. Winding length should be max possible


  be  below 0.5 mm the av3erage
 

 

        7. Weighted average of mic value should not be
         9. Trail with different top roller setting and

             more than 8%
              spacer
 

        8.  Uneven mixing of soft waste and more soft 
        10. Required same draft wheels for all ring

             waste adding
              frames for one count  

        9. Maintain right RH% in all departments
 

 

            ensure that humidifications  correction factore
 

 

              is taken care while correcting hank in machine
       

   








           ADOPTION MESURES TO CONTROL

           ADOPTION MESURES TO CONTROL COUNT 
                 COUNT CV% IN PROCESS

                CV% IN PROCESS
      Blow room :-
 

   Drawing :-
             1. Variation in tufft size is an important

            1. Maintain suffciant gap between the coils in
                 facture influence between bobbin

               delevery can to avoid pealing
                  variation.
 

            2. Maintain the can contant as per recomanda
             2. Irregualr air flow in blow room condencer

               tions  18" can dia should 14 to 16 kgs only
                 area
 

                to avoid over filling
             3. Improper openeing and improper beater

            3. Avoid sliver distrubunce due to improper
                  speeds
 

               handling
             4. Improper shyncranisation

           5. Life of the spring and ensure that the sliver
             5. Faulty air currents  

               coils has to come up due to spring pressure
             6.Dirty condencer screen with rough

               while unwinding at next process
                 serface
 

           6. Use minimum web tension draft
         Carding :-
 

           7. Ensure that the loading variations on top 
            1. Ensure card sliver hank variation are not

               roller to minimum possible extent
                 more than  +/- 3.0%  

           8. Ensure that all the top rollers are the same
            2. Ensure that meter to meter variation in

               diameter
                card sliver should be < 3.5%

           9. Ensure that A% and 1 meter cv% are under
 

 

               control
       

   








102           103  
         Drawing :
 

    ADOPTION MESURES TO CONTROL COUNT CV%
                 Ensure that correct size of feed and

          IN PROCESS  -  SIMPLEX
                 and delevery condencers are running


 
                 in the machine for the same count

          1. Ensure that the correct size of delevery and
             11. Draframe sliver U%  a direct influance 

                feed condencers and also same process
                   on the count cv% as well as fabric

          2. Worn out chouwking condencers to be 
                   appearance  

              replaced
12  Hank to be confirmed in the autolevelers

          3. Sliver in creel should not be criss/ cross
  off positiojn once in a week for

          4. Can spring condition  can top edge damage
  all draframes  

          coiling in cans  should not touch cans inner
          13. Normally hank correction to be carried

          edge to avoid peeling off
                out +/-  1.0 %    

          5. Damage false twister
           14.  With short staple cotton 2 passages

          6.  Ensure minimum diffrence  in between front 
                   of post combing drawing will reduce

                and back row
                   the count cv% significaantly

          7. Check 5 meters  30 samples for roving cv%
           15. Ensure group feeding at all placess

              once in a week  cv for corser hank 0.7 and
                  for better control on  aaand better 

               finer haank 1.0
                  quick tracability of deviations

          8.  Ensure that same number of turns on 
 

 

              all spindles ensure that there is no choking in
       

               the flyers inside portion  use horn for cleaning
 





 
104      

105  
   Simplex :-
 

  ADOPTION MESURES TO CONTROL CV%
                corrct wi nding on wheel ( L.W)

              1. Variation in RF Draft in between frames
                 incorrect winding on wheel  is more

               2. Slippage of top rollers and aprons indauate
                 determental to  count cv% in correct

                    weighting improper grip groved formation
                 ratching wheel  

              3. Stretch of meterial in creel  lesser roving TM
                 ( No. of coils/ cm = 5.0/ Hank)

                  Bobbin holder struck up and more creel hight
 

 

              4. Higher frequancy of cots buffing and high
             Preferbly wind the bobbin rail up or down

                 starting dia will helpful to reduce count cv%
              to start with a full layer to avoid ratching

             5. Toparm loading variation  Due to worn out 
              in the intial layer  

                springs air leakege improper seating of cradel
            Ensure that creel drive is smooth

            6. Mis alignment of creel roving bobbin criss - cross
 

 

               roving 
           Attention should be given to clearer waste

          7. Creel guide rod position inrelation to the bobbin
           problem  process wise mc wise spdl wise

              and count ( if located too high or too low stretch
           delevery wise
 

               taken when roving un winds from top most bottom
 

 

              most portion of roving bobbin
            Attention should be given to groved aprons 

          8. Ensure that roving does not touch other bobbin
               groved cots which causes slippage

              in ring frame creel
 

 

   
               








106           107  
              GENERAL CONSEPT OF COUNT CV%

                  REDUCING RING FRAME BREAKEGES
 

 

                      
          Higher cv especially of medium to long 

                If brekege rate is more from 0 to 1/4 th stage
         length range results in moire like appearance

                 the following precotions to be taken
         in fabric and increase warp way steaks and

               1. Reduce the speed pattren at intial stage
        weft bars
 

               2. Check the ballon formation when the ballon
        More clearance between ring dia and full 

                   touch the seperator create a breakage
         package
 

                   at lappet eye ank make multiple breakes
       cv% of half lea will be 1.2 to 1.3 times more

               3. Bottom cop built  change cercular shape
        than cv% of full lea  

                   to  "V" Shape
       Wraping of cv of wraping may be on 5 yards

              4.  Use heavy traveller to control baloon formation
       instead of 15 yards at simplex

              5. Change the traveller profile
       at drawing cv of wrapping based on 0.5 yard

              6. Observe the traveller loading means fluff
       length will be more useful  

                  at travellers 
       Total yarn coung variation is contributes by 

              7. Change the traveller clearer setting 1.8 mm 
        65% between bobbin variation and 35% 

              8. Lappet hole dia should be 1.5 mm to 1.8 mm
       within bobbin variation  

              9. Select suitable flange and traveller profile
 

 

              10. Use ring lope oil in ring spinning
      under good working condition blow room

              11. Slect propler hase length  D to d = 2:1
       and carding accounts for 14% draw frame

   
 





 
108      

109  
                  REDUCING RING FRAME BREAKEGE

                  REDUCING RING FRAME BREAKEGE
                 1. The ring traveller together with the

   
                    yarn as a pull element is set into

              1. The tube length  determains (with the yarn 
                    motion on the ring by the rotation of the

                  guide  the maximum ballon length  this is an
                    spindle
 

                important facture for the performance of  ring
             2. If the direction of pull deviates too much

                spinning machine.
                 from the running direction of the 

             2. Shorter the ballon higher traveller speed
                  traveller (alpha less than 30 deg) the

                 can achive
                 tension load will be too high

             3. spindle rotation without vibrations and 
           3. The pulling tension can be reduced 

                 correct consist of bobbin tube
                 by adopting the ring or tube dia

   
          4. During winding upon the tube after 

             4. Ring with exact roundness and firm seating 
              doffing resp. at the top of the conical

                 in horizental position
              part of the bobbin  

             5. Correct seating of the traveller clearer  space 
         5. Ratio of tube length to ring diameter

                 should be 0.2 to 0.3 mm
                ideal ratio  5 :1  

             6. Rtecomanded flange width
         6. Lappet hight  2d +5 of tube dia for lappet

                 1/2 flange  2.6 mm
               setting
 

                  Singel flange 3.2 mm
 

 

                  Double flange 4.0 mm
       

   
               
110

 

111  
         REDUCING RING FRAME BREAKEGES

            BLEND TEST PROCEDURE
       

     Binarey mixtures of regenerated cellulosic
 

 

     and cotton mix
 

 

   
         1. When the ring diameter is less ballon

               1. Ammonia ( Dilute solutions )
             diameter will be small  this leds to more

                   20 ml concentrated Ammonium hydroxide
             yarn tension hence use lighter traveller

                   specific gravity % 0.88 made up to 1 leter
 

 

                   of water 
         2. When the ring diameter is high ballon

              2. Concentrated solfuric acid  = 60% +b wa 2. Concentrated solfiric acid  
             diameter will be more this leads to less yarn

           60% H2SO4  +40 % WATER   
            tension and ballon touches the seperator

   
           hence uyse heavier traveller

             3. Tools  two glas flasks and one mechanical
 

 

                  rod.
        3. When the tube length is long the yarn

      Procedure :-
             tension will be less hence use hevier

                
             traveller
 

              1. Take test specimen about one or two  grams       1. Take test specimen one or two grams or lea
 

 

        2. Then dry the specimen at 105 Deg c in oven
        4. When the yarn contact area and ring contact

       3. Trancefor the specimen to a glass flask at
             area in traveller is closer fiber lubrication is

            room temparature
             better especially in cotton  hence use 

   
            hevar traveller  



112      



                 BLEND TEST PROCEDURE 

113  
                 BLEND TEST PROCEDURE 

                BLEND TEST PROCEDURE
                
 

                
                 4. Apply the saluation 60% sulfuric

              PERCENTAGE OF COTTN =
                       40% water at 27 De c 

   
                 5. Shake thoughly preferby with a 

                100 X Mr x d / MS
                     mechanical rod for 30 min

   
                6. And then trancefor the specimen

                Mr = Specimen weight after dessolve
                    to another glass  

                d  = Correction factore  ( 1.05)
                7. Then use again apply the saluation

              MS = Weight of the specimen bofore 
                     with few minutes wash the specimen

                        dessolve
                   with the salfuric acid saluation

            
                8. Then wash the specimen with  

               Then you an know the percentage of 
                    dilute ammonia saluation

               cellulosic re- generated fiber
                  ( Ammonium hydroxide ) 

   
               9. Then wash the specimen with water

             Report :-  The report shell include the following  
                    twice
 

                            information
              10. Dry the specimen with 105 De c 

    A = Type of meterial  B = % of re generated fiber
                     Temparature  

   C =  Cotton
 

 

   
       



114

 

115  
                   SOME BLEND TEST SOLVI NG

             P.V. BLEND TEST PROCEDURE
                          AGENTS  

   
 

 

      1. Water 30 ml  +H2SO4 40 ML
                 100 % Polyester dissolved in final 

   
 

 

  Reduce the sulution temparature 45 Deg C
                 100% vsf Dissolved in H2SO4 

   
 

 

  Kept the specimen in the sulution
                 Wool  95% water +5% costic soda 

   
                        Heat the soulation

  Kept 30 Min idle condition
                  PV  =  H2SO4 + WATER  

   
 

 

  Wash the specimen with hot water
                  Acrylic : Dyemethal formide

  Dry the specimen 
 

 

   
 

 

  Weight the specimen
 

 

   
 

 

              After weight/ Before weight x 100
 

 

   
 

 

  100 - Value = Blend %  ( Viscose dessolved)
       

   








116      

117  
                 YARN FAULTS GENERATED IN

  TYPES OF FAULTS GENERATED IN SPINNING
                      RING SPINNING  

   Spun - in - fly :-   S1
                            DIAGRAM  

  This referse to free fibers which fall into the
 

 

  drafting elements or into the roving beaing fed into
 

 

  the drafting unit and are then twisted into the yarn
 

 

  along their entire unit
 

 

   
 

 

  Loosese fly :- S2
 

 

  This refers to fibers which are collected by the
 

 

  yarn at a position after the front roller and in most
 

 

  cases are only spun in out one end
 

 

   
 

 

  Longe collection of fly :- S3
 

 

   
 

 

   These are matted fibers which collect together on 
 

 

  apron or rollrs and form time to time are collected
 

 

  and carried along by the yarn
 

 

   
       

   








118      

119  
                 YARN FAULTS AT SPINNING

                 YARN FAULTS AT SPINNING
 

 

             Crakers :_  ( S7)
        Fishes ( Corkscrew ) :- S4

                 These results due to extra long fibers 
           These faults results to due to static charging 

                 which distrubute the drafting process and
           or a result of un suitable drafting or drafting

                for short instant of time stop the passage of
           aprons which have craked surface

                yarn.
 

 

   
       Pushed together of fibers :-  ( S5)

              PIECINGS ( P1 )
          These are faults resulting from held back

                As with the short staple materiales  these
          fibers and occure primery at the ring

               faults are normally produced  in the process
           traveller
 

                prior to spinning
 

 

   
          Chains of faults :- ( S6)  

              LONG SLUBS (P2) :-
            These are combination of the faults  S1 S2

   
            Possibely also S3  which occure in short 

                This referse to premearly short fibers or haires
            sucession one after the other along the

                which hold together as a single unit and appear  
            length of the yarn  

               IN  the yarn as  untwisted placess
 

 

   
       

   








120      

121  
        TIPS FOR RING TO TUBE RELATIONS

         HOW TO REDUCE BREAKEGE RATE IN RING 
 

 

             SPINNING AT THE STAGE OF 0 - 1/4 Th
 

 

          1. Reduce the speed patterning at initial stage
      Lappet setting   =  2d + 5 mm

          2. Check the ballon formation when the ballon touch
 

 

               the seperator  break at lappet eye and make
             2d =  Tube top dia ( Bobbin)

               multyple breaks
         Ring dia to tube dia  =  

          3. Bottom cop built change cercular shape to 
                       2 : 1 mm  =    

              "V" shape
                 Ex ring dia = 36 mm Tube top = 18

          4. Use heavy traveller to control ballon formation
                     Ratio = 2 : 1 mm  

           5. Change the traveller profile
        Ring dia to  tube length = 1 : 5 mm

           6. Observe the traveller loading mean fluff at 
 

 

                traveller
                  Ex ring dia 36 mm Tube length = 180

          7. Change the traveller clearer setting 1.8 mm
 

 

          8. Select suitable flange and traveller profile
           Chase length =   

          9.  Use ring lope oil in ring spinning
 

 

          10.Select the proper chase length
                  Ring dia + 5 mm or 10% of ring dia 

           11. The ring traveller together with the yarn
 

 

                  as a pull element is set into motion on the ring
       

   








122      

123  
      REDUCING BREAKEGE RATE IN SPINNING  
        HOW TO REDUCE BREAKEGE RATE 
        By the rotation of the spindle  
                 IN RING SPINNING @ 1/4 Th stage
         If the directin of pull deviates too much   
   
        from the running direction of the traveller  
         The tube length determains ( With the yarn guide)
        ( Alpha less than 30 Deg ) the tension load  
         The maximum ballon length this is an important 
          will be too high.    
         factore for the performance of ring spinning 
 

   
        machine
         The pulling tension can be reduced by   
   
         Adopting the ring or tube diameter  
        14. Shorter the ballon higher traveller speed can 
 

   
              achive
( Alpha greater than 30 Deg during the winding  
        15. Spindle rotation without vibration and correct 
    upon the table after doffing resp. At the top  
               connectivity of bobbin tube
     of the conical port of the bobbin  
        16. Ring with exact roundness and firm seating
 

   
              in horizental position
        Ratio of the tube length to ring diameter  
         17. Correct seating of the traveller clearer space 
 

   
               should be 0.20 t0 0.3 mm
 

   
   
 

   
   
         
   




 
 
124      

125  
        HOW TO REDUCE BREAKEGE RATE 

     18.0 1/2 Flange = 2.6 mm
                 IN RING SPINNING @ 1/4 Th stage

      Single flange = 3.2 mm
 

 


 
        ring by the rotation of the spindle if the direction

      Double flange = 4.0 mm
        of pull deviates too much from the running


 
       direction of the traveller ( alpha less than 30

        When the ring diameter is less ballon diameter
        degree) the tension load will be too high

        will be small . This leads to more yarn tenson 
 

 

        Hence use lighter traveller
         The pulling tension can be reduced by 


 
         adopting the ring or the diameter

        When the tube length is long  the yarn tenson
     During winding upon the tube after doffing

        will be less  hence use  havier travellers
      resp at the top of the conical part of the


 
      bobbin.
 

         When the yarn contact area and the ring 
    12. Ratio between tube length to ring diameter

         contact area in traveller  is close  fiber lubrication
             Ideal ratio = 5 :1  

         is better especially in cotton  hence use heavear 
13. Lappet hight 2d +5 mm of tube dia for lappet

         Traveller
         setting
 


 
 

 

       Traveller speed should be  35 to 40 mts/Sec
       

   








              GENERAL FOURMULAS

   
126

 

127  
         1. Builder motion :  

           6. Cotton yarn content in cop   =
               New ratchet = present ratchet wheel

                3.25x L X D2  = L = SPDL LIFT D = RING DIA
                               x sqr of present HK/ New hk

         7. Roving contnent in kgs  = ( 3 x L X D2)/1000
 

 

         8. Sliver content in kgs ( for different can size) 
         2. Twist change wheel :  

               = 1.5 x Height x Diameter 2
                  New change wheel = Present wheel x

         9.  HOK  =
        ( sqr of present Nec /New Nec ) x Present 

              ( Operative hours/ Total of the standardized
          TM/ New TM
 

      ring spinning production in indivedual counts x 100)
 

 


 
        3. Yarn tension weight = 0.571 x lea strength

         OHS =
                   in kgs +1.8   

               ( HOK adjested to 40s x Production/ spindle
        4. Open end spinning  TPM =

                  adjested to 40s )/800
                     Delevery speed in mts/ min x tex x 60

       10. Relation between twist Multiplier for maximum
          x eff% / 1000
 

              strength 
       = (Rotor rpm x tex x eff x 60) / 1000 x tpm

        T  max   =  ( 50 - L + f )/9
 

 

                T max = Tm for maxximum strength
 

 

         L = 50% SPAN LENGTH f = Mic value
       

   








              GENERAL FOURMULAS

2  
128

 

129  
     11. Fiber bundle strength =


 
               ( Breaking load in kgs x 15)/ sample


 
                                weight in milligrams


 
 

 


 
      Breaking elongation% =   


 
            ( Length at breaking load - Nominal guage


 
                length )/Nominal guage length x 80


 
 

 


 
      The pressely index ( P.I)  


 
 

 


 
       ( Breaking load in pounds/ Bundle weight


 
                in milligrams )  


 
 

 


 
      12. Effictive length bear sorter =


 
                   1.013 x 2.5% span length


 
     13.Mean length = 1.242 x 50% SL + 9.78


 
 

 


 
       

   

No comments:

Post a Comment