1 | 2 | ||||||
1) Double yarn imperfections = S.Y.Imperfections x 0.2. | |||||||
Single yarn imp x 0.17 | |||||||
THE HANK BOOK OF STATASTICAL | |||||||
AND PRODUCTIVITY FOURMULAS | 2 ) Single yarn strength in grams = | ||||||
PART - 1 | Strength inlbs/ 0.276 | ||||||
Contents :- | 3 ) RKM = C.S.P / 176 or C.S.P X 0.6/100 | ||||||
> The machine related faults & remidies | |||||||
> Statastical & prodectivity fourmulas | 4) 1 Deg C = 32 X F X 9/2 | ||||||
> Process problems & remidies | |||||||
> The compleat source of yarn faults classifications | 5) Traveller speed = ( Meters/Sec ) | ||||||
> The orgin of yarn faults and remedies | 3.14 x Ring dia X spdl speed | ||||||
------------------------------------- | |||||||
60 x 1000 | |||||||
Prepared By : | 6) No. of winders = | ||||||
D.NAGESWARARAO. | Production/ Frame | ||||||
Quality control officer | ------------------------ | ||||||
M/s I.C.M. LIMITED | Production/ Winder | ||||||
GUNTUR ( Dt) | |||||||
3 | 4 | ||||||
7) No. of drums allotment = | 11) Double yarn C.S.P = S.y C.S.P X 1.25 | ||||||
4.8 x length of yarn per bobbin mts +1 | 12) Double yarn U% = Single yarn u% x 0.7 | ||||||
----------------------------------------------------- | 13) Cop content = | ||||||
winding speed mpm | 3.8 x ( Ring dia2)x lift in Inches | ||||||
14) Denier = Mic x 0.354 | |||||||
8 ) Machine effciancy = | 15) Mic = Denier x 2.82 | ||||||
4500 x length of yarn in mts | |||||||
------------------------------------------- | 16) STD. FRS = Caliculated speed | ||||||
Winding speed x no. of drums | STD.Speed/ Act. Tpi x Fr. Dia x 3.142 | ||||||
9 ) Ring traveller cut in groving = | |||||||
17) ACT. FRS = Act. SPEED | |||||||
494 x lea strength in lbs x 10 | ------------------- | ||||||
-------------------------------------------- | Act. TPI X Fr. Dia X 3.142 | ||||||
Ring dia in mm x Spdl speed | 18) No. of coils/ inch ( For course count ) | ||||||
T.M X 10 SQR H.K | |||||||
10 ) Tension weight in Grams = | 19) No. of coils/inch ( Fine HK ) | ||||||
Lea strength in lbs x 0.118 | T.M X 13 SQR H.K | ||||||
5 | 6 | ||||||
20) Sides allotment in ring frame = | 23) Fiber mturity ratio : | ||||||
Normal fibers - Dead fibers | |||||||
b = 125/n - 30/sqr c - 1 | ----------------------------------------- x 0.7 | ||||||
b = end breaks/ 100 spdl/ hr | 200 | ||||||
c = count ne | |||||||
n = no. of sides assinged for a tinter | 24) Maturity co - effciant = | ||||||
21 ) Relative humidity = | N +0.75+0.45D/ 100 | ||||||
Actual Vapaur pressure | N = Normal fibers | ||||||
--------------------------------- | x 100 | T = Thin walled or half mature | |||||
Standard vapour pressure | D = Dead fibers | ||||||
22) Correction of yarn count for Humidity | 24) Fiber diameter in microns | ||||||
changes ( Corrected count Ne) | Sqr of 3.14 x Denier/specific gravity | ||||||
= n (100 +b Ra ) | |||||||
--------------------- | 25) Drawing delevery speed mts/min | ||||||
100 + Rs | = 3.14 x D X N/1000 | ||||||
N = Actual count | |||||||
Ra = Actual regain | |||||||
Rs = Standard Regain | |||||||
7 | 8 | ||||||
26) Maturity co - effciant | 28) R/F Production/ spindle/ 8 hrs = | ||||||
SPDL speed x 60 x 8 | |||||||
N + 0.75 +b 0.45D | -------------------------------- x eff | ||||||
---------------------- | 840 x 36 x tpi x ct x 2.204 | ||||||
100 | |||||||
28) Expected hanks/ shift/ 8 hrs = | |||||||
N = Normal fiber | |||||||
T = Thin walled or half walled mature | Spdl speed/ tpi / 63 x eff | ||||||
D = Dead fiber | |||||||
29) Fourmula to find out bobbin building | |||||||
27) Fiber diameter in microns | Total turns on bobbin/ spdl speed | ||||||
sqr of 3.14 x Denier/ Specific gravity | |||||||
Total turns on bobbin = | |||||||
Delevery speed in mts/ Min ( Drawing ) | Length in inches of yarn in bobbin x TPI | ||||||
= 3.14 x D X N / 1000 | Length in inches in bobbin = | ||||||
Wt of the material in lbs x 840 x 36 | |||||||
9 | 10 | ||||||
32) Twist contraction % = | 36 Total mechanical draft = MD X BD | ||||||
( 2.64 x T.M ) - 4.82 | 24.22 X 1.46 | ||||||
33) Avg, Count | 37) Winding length /cam revaluations | ||||||
( C1W1 +C2W2 +C3W3 ) | 1 x 121 x 73 x 69 x 26 x 3.14 x 27 | ||||||
-------------------------------- | ------------------------------------------------- | ||||||
W1 +Bw2 | W1 + Bw2 +W3 | 2 x 40 x 102 x 29 x 1000 | |||||
= 5.67 mts | |||||||
C1, C2, C3 are the counts | 38) Count delevered at front roller nip | ||||||
W1 ,W2,W3 Production/shift | Total draft x Roving hank | ||||||
39) Yarn cv% = | |||||||
34) IFTPI Changed then grams/ Spindle | CV% +/- 2CV%/SQR OF N | ||||||
Given production x curent TPI/EXPT. TPI | 40) Yarn diameter = 0.95/ sqr of count | ||||||
35) If spindle RPM Changed then grams/spdl | 41) Coils/ inch = 0.50x sqr of ct x 25.4 | ||||||
= Given production x expected RPM | 42) Yarn relisation = | ||||||
--------------------------------------------- | ( 95 -T) ( 1 - C/100)3 | ||||||
Running spindle RPM | |||||||
11 | 12 | ||||||
43) To find out the average Denier in a mixing | 46) Energy cost = | ||||||
Denier % | Total units /Production in kgs | ||||||
Ex : 1.5D - 50% | 47) U.K.G = total units lost consumed/ | ||||||
8.0D 20 % | Production in kgs | ||||||
3.0D 30 % | 48) Linear density of yarn in count systeam | ||||||
= 50/1.5 +20/8 +30/3 = 45.8 | Ne = 453.6/ 7 x M | ||||||
100/45.8 = 2.18 | m = 120 yds | ||||||
44) Caliculation of siders% achived siders% | 49) Count in yarn tex = M/100 X 100 | ||||||
Act. Hanks ( 100 - cal.w% +ach idles | |||||||
------------------------------------------------------ | 50) Dia correction facture = | ||||||
STD Hanks x (100 - Stdw% +STD | Old correction facture x Normal dia | ||||||
IDLES | -------------------------------------------- | ||||||
Actual dia | |||||||
45) Twist variation % = | 51) Centinutons to grams | ||||||
Twist variation/Intial tpi x 100 | CN X 2.5 = GRAMS | ||||||
13 | 14 | ||||||
51) T.F.O Producton/ spindle/ 8 hrs = | 55) Take up roller speed = | ||||||
0.204 x Spindle speed/TPI | |||||||
Spdl speed x 60 x 8 x 2 | |||||||
----------------------------------------------- | 56) Cam speed = Take up roller speed x 27 | ||||||
TPI X 36 X 840 X Ct x 2.204 | ------------------------------------------- | ||||||
100 x cam wheel x 50 | |||||||
52) No. of Twists = Spdl speed rpm x 2/ | |||||||
Yarn speed in mpm | 57) Pre take up roller speed = | ||||||
Take up roller speed x 72/28 x Drive wheel | |||||||
= 15168.6 x d/D | -------------------------------------------------------- | ||||||
Driven wheel | |||||||
53) Delevery speed = Spdl speed/ | |||||||
TPI X 39.37 X 2 | 58) Over feed ration = 72/28 x Driver / Driven x 51 | ||||||
/77- 1 x 100 | |||||||
54) Lease Angle ( Tan ) | |||||||
2 x Traverse length x takeup roll Speed | 59) Density of take up package = | ||||||
------------------------------------------------------- | |||||||
3.14 x Take up roller dia x Cam speed | |||||||
15 | 16 | ||||||
60) Density of take up package = | 65) Total imperfections = 0.170 x S.Y Imperfections | ||||||
Package in grams x 3.14 | |||||||
------------------------------------- | 66) Double yarn uster = Single yarn uster | ||||||
12 x H X ( D2 X D X d2) | -------------------------- | ||||||
Sqr fo No. of plyes | |||||||
H = Length in traverse | |||||||
D = Bigger dia of delevery package | LF 1400A 4/4 DRAFTING CALICULATIONS | ||||||
d = Smaller dia of delevery package | Dia 27 mm | ||||||
61) Power consumption wats/ Hr | 67) Creel tension draft = 0.022 x We | ||||||
3 x cos tita | |||||||
62) 1 unit = 100 Wattts/ Hr | 68) Twist constant = 0.0091426 x G/H X T.W | ||||||
1 Unit = 1 kw/ hr | |||||||
1 Unit = 745 Watts | 69) Draft constant = 29967.95/ BDCP X CP | ||||||
63) Doubling yarn strength = | |||||||
2.5 x ring yarn strength | 70) Cone drum end wheel = | ||||||
64) Doubling TPI = S.Y TPI X 0.7 | K X D1 X 1.83/ds | ||||||
71) Lifter whel = 10.5 x E/F X B1 / sqr of H.K | |||||||
B1 = 2.8 | |||||||
17 | 18 | ||||||
71) Tensen wheel = | 77) Draft constant = 29967.95 / BDCP | ||||||
4742 x B2 / D.S. X SQR H.K | 78 ) Break drat = 66.818/ BDCP | ||||||
B2 = 0.58 | 79) Tension wheel = 4742 x B2 X D.S X sqr of H.K | ||||||
D.S = Bare bobbin dia | |||||||
80) Coils per inch for course roving =- | |||||||
72) Coils/ inch = For course roving = | |||||||
TM X 10 ( Hank) 1/2 | TM X 10 ( H.K) 1/2 | ||||||
For fine = TM X 13 ( HANK) 1/2 | |||||||
81) For fine roving = | |||||||
LF 1400A DRAFTING 4/4 30 MM | |||||||
TM X 13 ( Hank) 1/2 | |||||||
73 ) Creel tension draft = | |||||||
0.024 x We ( creel tension wheel) | |||||||
74) Twist constant 0.008270 x g/h x Tw | RSB 851 CALICULATIONS | ||||||
75) Draft constant = 29967.95 | 82) Creel tension draft = | ||||||
------------------- | 0.00694 x w1 ( creel tension wheel) | ||||||
BDCP X CP | |||||||
19 | 20 | ||||||
83) Draw of tension = 0.0175 x W3 | 83) Intake tension draft = 0.7398 x w8/w9 | ||||||
( Draw of tension pully) | ( W8 +b W9 = 132 Teeth) | ||||||
84) Draft = 6.017 x ( Nw2/nw ) | 84) Break draft = draw ot tension = | ||||||
85) NW1 = Required hank | 0.0175 X W3 ( Draw of tension pully) | ||||||
-------------------- | 85) Draft = 6.017 x NW2/NW1 | ||||||
Present hank x present draft | |||||||
86) NW2 = Required hank | LR 6/S CALICULATIONS | ||||||
--------------------- | Spindle wharve = 19 mm 18.5 MM | ||||||
Present hk x present NW2 | Twist constant = 27.44 x d/c x b/a 28.15 | ||||||
Draft constant = 10.519x H/G | |||||||
87) B90 = Act. Hk - Std hk | Winding leangth = 3.11 x E/F | ||||||
------------------------ | --------------------------- x 1600 | Break draft constant = 67.09/BDCP 67.09 | |||||
Act. Hk | |||||||
A +B = 165 C+D = 137 E+F = 113 | |||||||
88) A % n - 1 = (n - 1) - n /n x 100 | G+H = 130 TO 175 | ||||||
n +1 = (n+1) - n / n x 100 | |||||||
21 | 22 | ||||||
WINDING CALICULATIONS | 96) Production % = Act. Prod | ||||||
----------------- x 100 | |||||||
Production/Drum / 8hrs | Std. Production | ||||||
97) Overall % = P% X U%/100 | |||||||
MPM X 1.0936 X 60 X8 | |||||||
----------------------------------------------- | 98) Tension weight in grams = | ||||||
840 XX COUNT X 2.204 | 1.8 +b(0.571x elongation lea str/kg) | ||||||
0.2835 X MPM/ COUNT | Yarn quality facture = | ||||||
Cleaning effciancy/ Knot facture | |||||||
94) Length correction factor = | |||||||
99) Knot facture = Total number of slub catchers | |||||||
STD Length / Act. Length x present | related yarn breaks in | ||||||
LCF | given length | ||||||
----------------------------------------------------- | |||||||
95) Utilisation % = | Total number of objct. Yarn faults | ||||||
removed by S.C from same length | |||||||
Worked hrs/Alloted hrs x Worked dr | Bobbin running time = | ||||||
-------------------------------------------------- | Avg length in meters/ Speed in mpm | ||||||
Alloted drums x 100 | |||||||
23 | 24 | ||||||
AUTOCONER CALICULATIONS | 103) RTI = Ratio of retair ( the average number | ||||||
of breaks/ bobbin | |||||||
100) S.E.F % = ( Spindle effciancy ) | No. of sucsess ful splicer - no. of bobbin | ||||||
change | |||||||
Winding time ( WDTM) / Shift | |||||||
------------------------------------- x 100 | x 100 | 104) MIS = Miss splicing% = | |||||
Run time ( RTM) - CBF alaram down time | |||||||
No. of doffs (NDOP) | |||||||
---------------------------- x 100 | |||||||
101) A.E.F.% ( Actual effciancy) | No. of bobbin change | ||||||
105) LW% = Ratio fo yellow buttion% | |||||||
Winding time / Shift | = No. of times yellow buttion activated | ||||||
------------------------------ x 100 | -----------------------------------------------------x 100 | ||||||
SFTM ( shift time ) | No. of splicings | ||||||
102) JOIY% = Avg. no. of splicings/ 1000 | 106) RTM = Runtime minutes | ||||||
miles of yarn | |||||||
No. of splicings | |||||||
----------------------- x 100 | |||||||
Yarn winding length/ Shift | |||||||
25 | 26 | ||||||
106) SBC % = Ratio of bobbin change % | 111) SDTM = Splice down time for caser | ||||||
= Run time - Winding time | |||||||
= No. of bobbins changes | 112) AC/Y = Avg. no. of NEPcutts/100000 mts | ||||||
-------------------------------- | |||||||
No. of bobbin changes +bNo.of yarn ct | No. of yarn clearers defective cutts | ||||||
------------------------------------------------- x 100000 | |||||||
107) SCC% = ( Ratio of yarn clearer cutts) | Winding length | ||||||
113) SC/Y = Avg. no. of slub cutts /100000 mts | |||||||
Additional cutts ratio | |||||||
--------------------------- x 100 | = No. of yarn clearence | ||||||
No. of bobbin changes +no. of yarn clg cuts | Diffective cutts - Wdg length | ||||||
------------------------------------ x 100000 | |||||||
108) SPCY = SPDL CUTS/LAC MTS | Shift ( all yarn) | ||||||
CCLY = CLEARER CUTS/LAC METERS | |||||||
NYCA = No. of yarn ct alaram | 114) LC/Y = Avg. no. of long thick placess cutts/ | ||||||
100000 mts | |||||||
109) NADM = No. of miss auto doffing | 115) No. of T defective clearer = | ||||||
Yarn alaram cutts | |||||||
110) AC/Y Avg . No of nep cutts/10000mts | ------------------------- x 100000 | ||||||
Winding length/ shift | |||||||
27 | 28 | ||||||
117) Drawing production/Del = | 120) D/F Production/ Del/ 8 hrs = | ||||||
0.625 x MPM X EFF/100 | |||||||
0.069 x sliver hk ( 35 mm frd ) | |||||||
0.053 x Sliver hk ( 27 mm frd) | 121) NO. Of fibers in sliver cross section = | ||||||
0.050 x Sliver hk ( 25.44 mm frd) | 15000/ hank x mic | ||||||
118) Riquired draft in ring spinning | 122) Simplex & Spinning productin/spdl/ 8 hrs | ||||||
= 7.2 x Spdl speed x Mc eff | |||||||
Count 18s to 44 4.5 sqr count | ------------------------------------ | ||||||
Count 50s to 70 4.0 sqr count | TPI X Roving hk x 100000 | ||||||
Count 80s to 100 3.3 sqr count | 123) Doubling prod = 7.2 x spdl speed | ||||||
----------------------- x eff | |||||||
119) Actual hank = | tpi x resultan count | ||||||
8.33 x no. of yards | |||||||
-------------------------- | 124) Blow room production = | ||||||
15.432 x Avg.wt in grams | |||||||
8.9 x S x d S = lap roller speed | |||||||
( i.e lenear density in high production cards) | ------------------- D = Dia of lap roller | ||||||
1000 x H H = Hank of lap | |||||||
29 | 30 | ||||||
CONVERSION FACTURES | 126) Cone winding production = | ||||||
125) | 0.2835 x S/C = KGS | ||||||
1 YARD = 36 INCHES | S = WINDING SPEED C = COUNT | ||||||
1 Hank = 840 yards | |||||||
1 Meter = 1.094 yards | 127) Conversions for hanks to kilograms = | ||||||
1 Kg = 2.204 lbs | Hanks x 0.4536 | ||||||
1 Inch = 2.54 cms | ------------------------------------------------- | ||||||
1 inch = 25.4 mm | Sliver / roving/ count | ||||||
1 Lb = 453.4 grams | 128) Carding production = 0.855 X S/H | ||||||
1 Gram = 15.4 grains | S = Doffer speed | ||||||
1 Yard = 3 feets | H = Hank of sliver | ||||||
1 Foot = 12 inches | Tension draft = 1.4 | ||||||
1 Lb - 16 ouncess | |||||||
1 Ounce = 28.34 grains | 129) Linear density in high production card sliver | ||||||
1 Yard = 0.91 meters | = | ||||||
1 Meter = 39.37 inchess | Actual hank = | ||||||
8.33 x no. of yards | |||||||
------------------------------- | |||||||
15.432 x Avg weight in grams | |||||||
31 | 32 | ||||||
127) Time to build a full bobbin = | 132) Standard nep count = | ||||||
(Nep/ board x H.K X Card width cms) | |||||||
( Length of yarn on bobbin ) | |||||||
---------------------------------- | 133) Can content in drawing = | ||||||
(Length delevery per hour) | 1.5 x Hight x Dia 2/ 1000 | ||||||
128) Yarn breaking strength = | 134) Trumpet bore size = | ||||||
For karded yarn = 2000/ count | 0.22 x sqr of grain per yard of sliver | ||||||
For combed yarn = 2250/ count | |||||||
135) Twist contraction% = | |||||||
129) Density of yarn package = | (2.64 x T.M ) - 4.82 | ||||||
Net weight on yarn package | |||||||
-------------------------------------- | 136) Spinning limit = | ||||||
Valume of yarn package | 5315 | ||||||
---------------------------------------------------------------- | |||||||
130 ) Tape width = | Diameter of fiber x Actual fiber/ fross section | ||||||
Face width of spindle wharve - 4 mm | |||||||
137) Uniformity ration = | |||||||
131) A/C Production = 0.283 x mts/ min/Ct | Mean fiber length/ upper hald mean lengt | ||||||
x 100 | |||||||
33 | 34 | ||||||
135) expected U% = | STATASTICAL FOURMULAS | ||||||
100/ sqr of N | |||||||
N = No. of fibers in cross section | 140) Q95% = | ||||||
K = T X S.D./ sqr of N | |||||||
N = Yarn denier/ Fiber denier | T = T value | ||||||
Yarn denier = 5315/ count | SD = Standard deviation | ||||||
N = No. of samples | |||||||
136) Break draft = ss back roller/ ss of mid | |||||||
141) T Value = | |||||||
137) Main draft = ss of first roll./ss of mid roll | X1 - X2 sqr of N | ||||||
----------------------- | |||||||
138) Total draft = ss of delevery roll / | sqr of SD1 +SD2 | ||||||
ss of feed roller | T value more than 2.67 it is statastically | ||||||
139) Comber production/day/ machine | siginificant | ||||||
0.0384 / 1000 x LSF( 100 - W) | X1 X2 = Mean values | ||||||
N = Number tests | |||||||
L = Lap weight | SD1 AND SD2 = Standard deviations | ||||||
S = Nip/Minits | |||||||
F = Feed/ Nip | |||||||
35 | 36 | ||||||
STATASTICAL FOURMULAS | 144) Che sequare test = | ||||||
( A +B )/ (A - B) 2 = > 4.0 | |||||||
142) F Test :- | |||||||
Two cv values are to be compared | 145) Power consumption = | ||||||
is to be conduct | HP X 0.746 X 3 SHIFTS X 8 | ||||||
--------------------------------------- x eff | |||||||
F = S1 squar | Consumption of production/ mc | ||||||
--------------- | 146) T.F.O Production/ day / machine = | ||||||
S2 squar | |||||||
F is always greater than 1 | 14.4 x Spdl rpm x eff x No. of drums x 3 | ||||||
------------------------------------------------------- | |||||||
143) Degree of freedom Caliculation per | TPI X COUNT X 1000 | ||||||
T test = | |||||||
The diffrence between variator drive and | |||||||
No. of samples = 2 | inverter drive = | ||||||
No. of readings per each test = 20 | Variator type machine mainly in spg. Motor | ||||||
Degree of freedom = 2(20-2) = 38 | rpm is fixed | ||||||
You can see that T value chart at 38 | Inverter drive in this principle inverter varie the | ||||||
degree of freedom | freequancy if frequancy is increased | ||||||
N = 120 X f/p | |||||||
37 | 38 | ||||||
STATASTICAL FOURMULAS | 146) Ex A mill having 150 breaks/ 1000spdl | ||||||
per hr in 60s count | |||||||
145) The hank of the drawing sliver for the | After change of mixing the level of | ||||||
department as whole would be | breakage 220 per 1000spdl/ hr | ||||||
Has the change of mixing increased the | |||||||
= 0.145 +/- 3SD/sqr of N | breakege rate ? | ||||||
+/- 3 X 0.00145/sqr of 8 | At present O = 220 E = 150 | ||||||
= 0.145 +/- 0.0016 | |||||||
Range = 01434 and 0.1466 | X2 = ( 220 - 150)2/150 = 4900/150 | ||||||
The hank 0.145 is statastically different for | = 32.7 | ||||||
the nominal hank 0.140 | I degree of freedom = 3.87 it is statasti | ||||||
cally significant | |||||||
APPLICATION OF X2( Che Squar ) Method | |||||||
146) X2 Defined as ( O - E)2 /E | |||||||
O & E are the observed and expected | |||||||
values | |||||||
39 | 40 | ||||||
STATASTICAL FOURMULAS | STATASTICAL FOURMULAS | ||||||
148) Application of F test | 149) SNAP STUDY : | ||||||
Card hank cv% = 4.0 | A round inside the department to list | ||||||
Taking some precations cv% reduced | the number of machines stopped due to | ||||||
3.5% Card hk 0.200 No. of readings | various causes is known as snap study | ||||||
= 40 is it statastically significant | |||||||
or Not ? | S = 1/100 X sqr of P(100-P)/sqr of N X rounds | ||||||
SD1 = CV1 X Mean /100 = 4 x 0.2/100 | |||||||
= 0.008 | S = SD of the estimate | ||||||
SD2 = CV2 X Mean/100 = 3.5x0.2/100 | P = Efficancy of the department | ||||||
= 0.007 | N = No. of machines observed | ||||||
SD1 sqr/SD2 sqr = 1.31 | S = 1/100 X sqr of 91 x 9/sqr of 30+60 | ||||||
= 0.67 | |||||||
The value should be grater than = 1.53 | |||||||
41 | 42 | ||||||
STATASTICAL FOURMULAS | 151) Fiber to yarn relation ship = | ||||||
150) | Lea C.S.P = | ||||||
Department Nature of problem Test to | 165 sqr of FQI +590 - 13C For karded count | ||||||
Blow room Fiber repture C.D | 152) Lea C.S.P | ||||||
Cleaning eff% C.D | 165 sqr of FQI +590 -13C (1+W/100) | ||||||
Neps generation X2 | for combed counts | ||||||
Carding Fiber repture C.D | |||||||
Cleaning eff C.D. | Here | ||||||
Nep generation X2 | |||||||
Cv% Hank F test | FQI = LSM/F | ||||||
M/c Stoppage Snap test | L = Mean length | ||||||
Drawing S.L Hank CV test | S = Fiber bundle strength | ||||||
S.L. Breaks F test | f = Micronaire value | ||||||
Cv of SL Hk F test | C= Yarn count | ||||||
M/c Stoppage Snap test | W = % of comber noil | ||||||
Simplex Str in roving Analysis of roving | |||||||
Mean hk of roving CV test | |||||||
End Breaks X2 TEST | |||||||
43 | 44 | ||||||
153) Time of build a full bobbin | SNAPSTUDY TEST | ||||||
Length of yarn on bobbin | |||||||
----------------------------------- | A Round inside the department to list the | ||||||
Length delevered per hr. | no. of machines stopped due to various | ||||||
154) Diameter of fiber in microns = | causes is known as snap study | ||||||
2000 x (sqr X /Y X 9000) | |||||||
X = Fiber diameter | > Expected effciancy of snap study = 95 | ||||||
y = Fiber specific gravity | > Observed efficancy = 91 | ||||||
> No. of rounds = 31 | |||||||
155) Uniformity ration = | > No. of ring frames = 60 | ||||||
Mean fiber length | |||||||
------------------------ x 100 | S = 1/100 X sqr of P(100-P)/sqr of N X Rounds | ||||||
Upper half mean length | |||||||
156) Opend end spinnign TPM = | |||||||
Delevery speed mpm / Rotor rpm | S = 1/100 X sqr of 91 x 9 | ||||||
------------------ = 0.67 | |||||||
157) OE Production in kgs/ hr/ Rotor | sqr of 30 x 60 | ||||||
= Delevery speed mpm x tex x 60xeff | |||||||
----------------------------------------------- | |||||||
1000 x TPM | |||||||
45 | 46 | ||||||
163) | MONETARING DATA DETAILS | ||||||
N = Diameter limit/ Neps | |||||||
DS = Diameter limit for short faults | |||||||
LS = Limit for short fault length | Total yarn cutts = Total yarn faults | ||||||
DL = Diameter limit for long faults | Short off cnt cutts = yarn count deviation | ||||||
and double yarn | Short count range | ||||||
LL = Limit for long fault length | |||||||
-D = Limit of the diameter decreases | Off count cutts = Yarn count deviation cutts | ||||||
for the faults | |||||||
-L = Limt for thin placess length | SFI/D Cutts = Surface index | ||||||
F cutts = Forgin matter cutts | |||||||
VCV = Varable CV channel | P cutts = Synthatic forgin matter | ||||||
Ex : | Short cluster cutts = Short faults cluster cutts | ||||||
Laboratory prcticess where check | Long cluster cutts = Long fault cluster cutts | ||||||
length of 400 or 1000 meters for CV | F cluster cutts = Forgin matter cluster cutts | ||||||
determination | VCV Cutts = Cuts resulting from a deviation of the | ||||||
In vcv the check length of cv can be varied | VCV Value from the mean value | ||||||
contionously between 1 and 50 meters | |||||||
Specific detection fo diameter variance | D Bunch cutts = Delayed cutts caused by a | ||||||
Bunch of similar running faults | |||||||
47 | 48 | ||||||
mixing | NEP AND FIBER DAMAGES | ||||||
Longer the finer cotton with high trash content | Carding | ||||||
are more prone to neppiness than shorter | 1. Damaged and worn wire points and depositi | ||||||
and courser ones very fine and long cottns | on of waxy material on the wire surface | ||||||
are found to break during processing and | are potencial cause of nesp | ||||||
thus create the nep formation | |||||||
2. Higher Lickren speeds remove the more | |||||||
Micronaire value greater than 3.5 and | motes and fly waste thus reduce the seed | ||||||
maturity co effciant about 0.8 are | cot neps | ||||||
likely to reduce nep formation | 3. Higher cylinder speed of the order of 460 rpm | ||||||
combined with high flats speed 15 to 20 cms | |||||||
per minute result a | |||||||
The addition of excissive shoft waste in | |||||||
Mixing will create yarn that are more neppy | 4) Modren high production cards the direction | ||||||
improper mixinf of long and short cottons | of rotation of flats is made opposite to rotation | ||||||
widley different level will produce neps | of the cylinder this helps to reduce the neps | ||||||
Fres flats are presented to the fibers that is | |||||||
Cottn with widly different trash levels will | coming out of the cylinder at the tranceper point | ||||||
produce more nep | |||||||
49 | 50 | ||||||
NEP AND FIBER DAMAGES | NEP FORMATION IN BLOW ROOM | ||||||
Fiber dmages refer to reduction in fiber length | 1. Cotton with too high or low moisture | ||||||
due to repture of repture of fibers during process | 2. Extreamly fine cotton with high trash | ||||||
The diffrence must be lower than 4.0 % | 3. Reprocessing of laps and soft waste mix | ||||||
4. Rough blend blades blent point beater pins | |||||||
Length between the length of feed and delevery | 5.Damaged grid bars | ||||||
is an indication fo fiber repture | 6.Narrow setting between the feed rollers or | ||||||
pedal and beater | |||||||
The chancess of fiber repture in the department | 7.Long curvecd aand U bends in conveyaer pipe | ||||||
line | |||||||
1. Blow room | 8.Inproperate ratio of fan to beater speed | ||||||
9.Excissve application of tint improper dreying | |||||||
The number of beating points used are | of tint before processing | ||||||
Not more than 3 to 5 depending upon the | 10.Wider setting between stripping rail and beater | ||||||
level of trash in the mixing | 11.Slak or too high fan belts | ||||||
12. Too high or low beater speeds | |||||||
2. Fiber damage main area lickren and feed | 13.Air leakege and obstruction of cotton through | ||||||
plate to lickren setting it is suggested tnat | pipe line | ||||||
20 to 25 thous | 14. More number of beater than the requirement | ||||||
51 | 52 | ||||||
CARDING | CARDING | ||||||
High card sliver variation : | Nep formation in cards : | ||||||
1. Too hihg a tension draft and stretch of web | 6. Jammed wire in doffer | ||||||
2. Variation in setting between back plate | 7. Uneven flat setting | ||||||
and cylinder | 8. Cylinder and flats or Doffer set too wide | ||||||
3. Variation in flats speed between cards | 9. Too much space between lickren cover and | ||||||
peocessing the same material | feed plate | ||||||
4. Damaged front and back plate | 10.Undercasing chocked with fly | ||||||
5. Size of the coiler trumpet not adjested | 11.Cylinder doffer not stripped properly after | ||||||
to hank | lapping | ||||||
6. Feed roller weighing not acting properly | 12. Dirty or chocked undercasing | ||||||
7. Diffrence in draft between cards | 13. Rough surface in front and back plate | ||||||
14.Insuffciant stripping | |||||||
Nep formation in carding :- | 15.Higher doffer speed | ||||||
16. Too fine immeture or damp cotton | |||||||
1. Lap too heavy coler settings of selvedges | |||||||
2.Wider back plate to cylinder settings | |||||||
3. High lickren speed | |||||||
4. Lickren set too far form feed plate | |||||||
5. Blunt lickren wire or dull flats | |||||||
53 | 54 | ||||||
COMBER | |||||||
High combeer sliver variation :_ | |||||||
1. Diffrence in waste extraction between | |||||||
heads | |||||||
2. Variation in the settings between back | |||||||
detaching roller and nipper | |||||||
3. Improper cam setting depending upon the | |||||||
staple length of the material | |||||||
4. Unicomb chocked with sead cots or | |||||||
immeture cotton | |||||||
5. Variation in detaching roller diameter | |||||||
6. Improper timing of tomp comb | |||||||
7. Poor condition of sadles and top detaching | |||||||
roller breakets | |||||||
8. Top comb touching the back detaching | |||||||
roller | |||||||
9. Improper pressure on nippers jaws | |||||||
55 | 56 | ||||||
DRAW FRAME | DRAW FRAME | ||||||
High drawing sliver variation:_ | ROLLER LAPPINGS IN DF | ||||||
1. Improper pressure on top rollers | |||||||
2. Improper roller coverings ecentric top | 1. Incorect setting of top roller clearers or | ||||||
and bottom rollers | worn clearers | ||||||
3. Incorrect trumpet size | |||||||
4. Improperly meshed or wrong gear wheels | |||||||
5. Excessive creel draft and web tension draft | |||||||
6. Stopmotion ineffctive function | |||||||
7. Incorrect sliver guide setting at feed | |||||||
8. Good fibers drawn due to high air pressure | |||||||
9. Variation in top roller diameter | |||||||
10. Warn out top rollers end bushess | End breaks in drawing :- | ||||||
11. Improper settings at sliver conditioning | 1. Double sliver in feed | ||||||
plate at creel | 2. Improper peicing at back feed | ||||||
12. Imnproper settings in sliver tension | 3. Incorrect trumpet size | ||||||
4. Cotton having excissive honey diew | |||||||
5. Damaged surface in drafting rollers | |||||||
6. Deeply meshed gears | |||||||
57 | 58 | ||||||
SIMPLEX PROBLEMS | SIMPLEX PROBLEMS | ||||||
Hank variation in roving : | Stretch at simplex :- | ||||||
1. Too high a break draft or total draft | |||||||
2. Improper selection fo condencer guide | 1. Improper winding on ratchet wheel | ||||||
3. Vibration fo roving bobbinon the slat | 2. Improper starting position of cone drum belt | ||||||
4. Streching of sliver at feed | 3. Improper intial bobbin layer and incorect | ||||||
5. High variation in bare bobbin diameter | build of layer | ||||||
6. Indaquate top arm pressure | 4. Variation in bare bobbin diameter | ||||||
7. Incorrect movement of cone drum belt | 5. Improper shifting of cone drum belt | ||||||
8. Irregular are closed aprons | |||||||
9. Warn damaged or improperly meshed | |||||||
gears and bearings | |||||||
10. Jurkey motion of bobbin rail | |||||||
Roller lappings :_ | |||||||
1. Damaged surface in the top roller cots | |||||||
2. Use of varnished in the top roller cots | |||||||
3. Damaged aprons are condenser guides | |||||||
4. Too wide settings at the back zone | |||||||
59 | 60 | ||||||
SIMPLEX PROBLEMS | END BREAKS IN SIMPLEX | ||||||
SLUBS :- | 6. Indaquate top roller pressure | ||||||
1.Excissive end breaks | 7. Vibration in flyers | ||||||
2. Wate accumalation at creels clearer | 8. Use of narrow spacers | ||||||
and flyers | 9. Damaged top edge of the cam | ||||||
3. Improper choice of spacer | 10. Loose spindle and bobbin shaft drive wheels | ||||||
4. Use of lower break draft | 11. Broken or damaged teeth in draft gears | ||||||
5. Closer setting at back zone | |||||||
6. Absence of positively driven top clearers | 12. Improper cleaning of draft zone | ||||||
7. Damaged or obsence of top and bottom | |||||||
roller cloth | 13. Damaged can springs and D shape cans | ||||||
END BREAAKS IN SPX | 14. Lashing of ends | ||||||
1. Incorrect choice of creel draft | |||||||
2. Sliver entanglement at feed | 15. Undrafting ends | ||||||
3. Improper peicing at back feed | |||||||
4. Too wide a back zone setting | 16. Warn out false twisters | ||||||
5. Looser or broken top and bottom | |||||||
apron | |||||||
61 | 62 | ||||||
RING SPINNING | BETWEEN BOBBIN COUNT VARIATION | ||||||
Uneven yarn :_ | 1. Excive variation in tuft size | ||||||
2. Use of three passage in post comber | |||||||
1. Indaquate pressure on top rollers | 3. Frequent changes in penion df and comb | ||||||
2. Damaged or worn rings | 4. Improper roller space setting or finisher passage | ||||||
3. Heavy or lighter travellers | settings colser than the breaker passage in | ||||||
4. Defective and worn gears | drawing | ||||||
5. Colse setting of traveller clearer | 5. Excive stretch in roving | ||||||
6. Non alignement of aprons | 6. Lower twist in roving | ||||||
7. Improper top roller settings | 7. Variation in bare bobbin diameter | ||||||
8. Lappet and spindle setting not correct | 8. Row to row diffrence in roving hank | ||||||
9. Bottom roller ecentric | Spindle vibrations and ring frame vibrations | ||||||
10. Too wide or too close back zone setting | 9 .High variation in relative humidity | ||||||
11. Improper use of break draft | 10. Variation in top roller pressure | ||||||
12. Broken or damaged roving guide | |||||||
13. Obstruction or vibration in the | |||||||
movement of roving travers | |||||||
63 | 64 | ||||||
WITHIN BOBBIN COUNT VARIATION | THICK AND THIN PLACESS IN YARN | ||||||
1. High card sliver and comber sliver u% | 1. High fiber length variation | ||||||
2. Roller slippage in drawing | 2. Poor carding or combing | ||||||
3. Excive web tension draft in drawing | 3. Uneven roving excive forgin matter in yarn | ||||||
4. Ratching in roving | 4. Ecentric top and bottom rollers | ||||||
5. High tension draft or improper coils in roving | 5. Insufficant pressure on top rollers | ||||||
6. Use of long seperater plates at high | 6. Wider settings between aprons broken aprons | ||||||
spindle speeds | 7. Too high a draft in ring frame | ||||||
7. Low humidity levels | 8. Improper setting of of tnesor bar | ||||||
Cracks in the yarn :_ | 9 Worn rings | ||||||
1. Mixing cotton diffreing widely in staple | 10. Too close setting between traveller clearer | ||||||
length | and traveller | ||||||
2. Too close setting in ring spinning | 11. Damaged top and bottom rollers | ||||||
3. Worn or unbuffed top rollers | 12. Jurkey motion of ring rail | ||||||
4. Improper stopping and starting of ring frames | 13. Worn out travellers | ||||||
5. Loese top and bottom aprons | 14. Excive fly lebaration in ring frames | ||||||
6. Inadequate top roller pressure | 15 | ||||||
7. Incorrect apron nip opening | |||||||
65 | 66 | ||||||
SLUBS IN THE YARN | 7. Spindle out of center with ring and lappet | ||||||
8. Cracked and worn bobbins | |||||||
1. Excive short fibers in the mixing | 9. Improper fit of bobbins | ||||||
2. Inadaquate indivedualisation in cards | 10. Incorrect bobbin diameter | ||||||
3. Improper peicing in roving | 11. Worn rings | ||||||
4. Variation in top roller pressure in ring fr | 12. Traveller clearer set close | ||||||
5. Improper pecing of roving | 13. Improper fit of bobbins | ||||||
6.Bad peicing with too long over lapping | 14. Worn rings | ||||||
7. Too wide setting between apron and | 15. Traveller clearer too close setting | ||||||
front roller | 16. Too high a draft | ||||||
17. Break draft not optimum | |||||||
END BREAKS IN RING SPINNIG | 18. Loose and worn aprons | ||||||
19. Incorrect shore hardness of top rollers | |||||||
1. Dmaged skeewers and clogged bobbin | 20. Insufficant pressure on top rollers | ||||||
holder | 21. Incorrect apron nip opening and setting | ||||||
2. Jerkey motion of ring rail | 22. Excessive twist in roving | ||||||
3. Vibration or ecentric spindle drive | 23. Lack of control of temparature nad humidity | ||||||
4. Slak spindle tapes | |||||||
5. Worn gear wheel and deep messhing gears | |||||||
6. Choking and improper alignment of pnumafil | |||||||
67 | 68 | ||||||
HIGH YARN HARINESS | CLASSIMATE FAULTS | ||||||
Factures influancing the classimate faults | |||||||
1. Mixing cotton with vide variation | |||||||
2. Excive short fiber content in mixing | |||||||
3. Use of excive draft in spinning & prep | 1. 25% of the classimate faults are influanced | ||||||
4. High spindle speed | by card process ( A1 B1 A2 B2 ) | ||||||
5. Incorrect choice of travellers | |||||||
6. Cutt in lappet hook | |||||||
7. Spindle lift | 2. 20% of faults inflyanced by Comber process | ||||||
8. Ballon formation | ( E F G faults ) | ||||||
10. Worn rings | |||||||
11. Ring rail jurkey motion | 3. 30% of faults are influanced by the ring | ||||||
12. Worn out travellers | frame process | ||||||
13. Improper bowe hight in traveeller | ( DRAFTING FAULTS ) | ||||||
14. Traveller pulling angle | |||||||
15. Too close traveller clearer setting | |||||||
16. Low tpi at ring spinning | |||||||
4. 30% of faults influanced by simplex and | |||||||
material handling ( Thin faults) | |||||||
69 | 70 | ||||||
CLASSIMATE FAULTS | CLASSIMATE FAULTS | ||||||
Long thick faults :- | |||||||
Short thick faults :- | 1. Presence of un opened roving in the blow room | ||||||
lap or card sliver | |||||||
1. Presence of large ammount of trash high | 2. Folding or over lapping the blowroom layers | ||||||
praportion of seed cot prigments | while feeding to the lickren of the cards | ||||||
2. Use of low micronaire cotton with high | 3. Use of improper settings in drawing | ||||||
level of humidity | 4. Too low a web or creel draft in drawing | ||||||
3. Use of cotton containing high proportion | resulting improper drafting | ||||||
of shart fibers | 5. Improper seating of floting and fixed condencers | ||||||
4. Excessive fiber entanglements | 6. Improper peicing in speed frame and ring frame | ||||||
5. Damaged wire points cylinder doffer | 7. Presence of lashing of excessive end breaks | ||||||
6. Absence of top roller clearers in simplex | in speed frame | ||||||
7. Use of broken and damaged surface of | 8. Too close a setting between traveller clearer | ||||||
the floting condencers | and traveller in ring frame | ||||||
8 Use of too wide or narrow settings in roving | 9. Use of narrow spacers in ring frames resulting | ||||||
and spinning machines | in undrafted ends | ||||||
9 use of improper spacers in speed frame | 10. Use of fibers having excessive variation in | ||||||
and ring frames | fibers length resulting in formation of crakers | ||||||
in the yarn. | |||||||
71 | 72 | ||||||
CLASSIMATE FAULTS | Method of reducing classimate faults | ||||||
Long thin faults :- | |||||||
1.Excissive incedence of web falling | While preparing the mixing wide variation | ||||||
2. Too high a break/ creel / web draft in | in length should be avoid | ||||||
draw frames | |||||||
3. Excessive variation in top roller pressure | 2. Treatment and selection of beaters in blow | ||||||
4. Looses top roller end bushes in draw frame | room could be decided depending upon the | ||||||
5. Distrubence for the free rotation of creel | type of cotton to used avoid entanglements | ||||||
callender rollers in draframe | |||||||
6. Sliver stretch of creel in speed frames | 3. Sytsamatic mentinence schedules should be | ||||||
due to high a creel draft | followed | ||||||
7. Excisive roving stretch due to improper | |||||||
function of builder mechanisiom | 4. Keep vire points condition should be followed | ||||||
8. Use fo empty roving bobbin In speed frame | |||||||
with a wide variation in bare bobbin dia | 5. Higher cylinder and flats speed may be emplyed | ||||||
9. Sliver spliting in speed frame while drafting | |||||||
10. Use of ring tubes with improper fit on the | 6. Higher noil extraction during combing helps for | ||||||
spindles | better removal of fiber cluster and immeture | ||||||
fibers in lumps | |||||||
73 | 74 | ||||||
CONTROLLING OF CLASSIMATE | SPECTOGRAMM ANALYSIS | ||||||
FAULTS | |||||||
1. Break draft, creel draft in dra frame | IDENTIFICATION OF DEFECTIVE PART | ||||||
speed frame should be maintedas per | FROM A GIVEN GEAR PLAN | ||||||
standards | |||||||
GEAR DIAGRAM | |||||||
2. The Condition and seating aprons , Floting | |||||||
condencers Roving guidesShould be | |||||||
maintained satisfactorily | |||||||
3. The setting between drafting rollers in | |||||||
preparatory and spinning machine | |||||||
should be kept as per the standard | |||||||
4. Over head clearers bottom roller clearers | |||||||
should be used when ever necessery | |||||||
5. Better maintinence of machenery house | |||||||
keeping Draft zone cleaning AND to avoid | WEAVE LENGTH OF THE PEAK IS = 3.0 CMS | ||||||
fiber accumalation in lappet and traveler | |||||||
clearer | |||||||
75 | 76 | ||||||
SPECTO GRAM ANALYSIS | SPECTO GRAM ANALYSIS | ||||||
Weave length of the faults form the | Defective component identification from | ||||||
different parts : | ROTATING SPEEDS | ||||||
85T gear front roller = 22/7 x 2.54 cm = 8 cm | Whavelength in cms = | ||||||
160t Gear = 22/7 x 160/85 = 15 cms | Delevery speed in cms/ min (v) | ||||||
--------------------------------------------- | |||||||
32T Gear 140T Gear = 15 x 32/16 = 3 cms | Frequancy in rpm ( f) | ||||||
100T Gear 35T Gear = 3 x 100/140 | Therefore f = v/lamida | ||||||
= 2 cms | |||||||
euating the rotating part ( wheel or roller) | |||||||
Conclusion : | whose rpm matches with this "f" value | ||||||
32T Gear or 140T Gear or the | the defective part can be identified | ||||||
connecting shaft is the defective part | |||||||
77 | 78 | ||||||
SPECTOGRAMM ANALYSIS - D40 | LR SB - 851 PEAKS ANALYSIS | ||||||
1 Meter = Back top roller or can | 10 CMS = Top roller out of round | ||||||
90 Cms = Coiler | |||||||
80 Cms = Back bottom roller | 12 CMS = Top roller with cutts | ||||||
50 Cms = CP value or middle top roller | 6 Cms = Ovell shaped top rollers | ||||||
12 Cms = Front top roller | 68 Cms = Top roller with one spot | ||||||
10 Cms = Front bottom roller | Caused by pressure on stopped | ||||||
40 Cms = Middle bottom roller | toproller over an extend period of time | ||||||
17 Cms = Delevery roller | 11.3 Cms = 1st bottom roller | ||||||
3 Meters = Problem with scanning roller drive | |||||||
LRSB - 851 PEAKS ANALYSIS | 50 Cms = Sliver funnel | ||||||
17 Cms = Callender roller or callender roller disk | |||||||
38 Cms = Breaak draft roller setting too wide | 85 Cms = Dort accumalation on the belt | ||||||
50 Cms = Main draft roller setting too narrow | 98 Cms = Distrubued sliver deposition | ||||||
8 Cms = Main draft roller setting too wide or | |||||||
fiber to fiber friction is too high | |||||||
Zig zag peaks = Top roller pressure not suffciant | |||||||
12 Cms = 1st bottom roller drive problem | |||||||
79 | 80 | ||||||
LF 1400A PEAKS CALICULATIONS | COMBER PEAKS CALICULATIONS | ||||||
1. COLER CALLNDER ROLLER | 1. Coiler callender roller or 28t pully = 18.6 mm | ||||||
7 Cms = 50T Wheel | 2.79.5 pully or 40t = 26.6 mm | ||||||
10 Cms = Front roller | 3. 50 Pully = 16.8 mm | ||||||
12.5 Cms = 80 T Wheel | 4. 37T or 20T = 24.66 mm | ||||||
8.0 Cms = Draft change gear | 5. Vertical shaft Wobbling = 29.6 mm | ||||||
9.0 Cms = Front bottom roller | 6. 40t or 25 t = 26.65 mm | ||||||
7. B wheel or 45t or 72T = 47.99 mm | |||||||
14.0 cms = Spindle wharve shaft | 8. Front bottom roller = 12 mm | ||||||
15.0 Cms = bobbin gear | 9. A Wheel 20T Wheel 35T Wheel X A/B | ||||||
16.0 Cms = Bobbin faults | 10. Front top roller = 15.423 mm | ||||||
17.0 Cms = carrier wheel | 11. Middle bottom roller = 28t or | ||||||
18.0 Cms = carrier wheel | Drafting whave = 3358.74 A(BX C) | ||||||
19.0 Cms = carrier wheel | 12.Back bottom roller /Drafting wharve = 120x a/b | ||||||
28.0 Cms Apron Top | 13. 44T/22T/ = 30.16 X A/B | ||||||
60.0 Second bottom roller | 14. Machine Pully /29T/40T = 1206.48 X A(BXT) | ||||||
65.0 Cms = Second top roller | 15. 143T / PEICING PEAK = 5849.2 X A(BXT) | ||||||
70. Second top roller | 16.Main motor pully = 4.605 x A X G (BX T) | ||||||
95.0 to 1.0 meters = 3rd bottom roller | 17. 138T/35T = 4162.35 X (A/BX T) | ||||||
110 = third top roller 130 = 3rd drive wheel | 20. Take of roller = 16696.96 x A (B XT) | ||||||
81 | 82 | ||||||
PREACATIONS AT T.F.O | PREACATIONS AT T.F.O | ||||||
1. Clean the seperators and capsules | 11 Every time hard waste should be put in the | ||||||
whenever put feed package into pot | pecer bag | ||||||
2. Feed the feed package into one unwinding | 12. Lock the drop wire at the time of knotting | ||||||
direction | 13. When ever the machine stopped lift the drop wire | ||||||
3. Do not feed the rejected cheeses | assembly through handle rod | ||||||
4. Particular condition should be followed | |||||||
5. At the time of thread cut knot under the pig tail | 14. Clean the flyer brush for every knot | ||||||
rod release the break and arrange the | |||||||
delevery package to the drum | 15. Do not keep any article inbetween the free | ||||||
6. Every yarn cutt clean the capsule and | takeup roller and take uproller | ||||||
set it right | |||||||
7. All the pots should be infront of the red dots | 16. Feed the feed packages according to | ||||||
8. T.V Number should equal to all spindles | instructions | ||||||
9.Observe the ballon for all spindles if | |||||||
ballon is not formed stop the package and | |||||||
remove the untwisted yarn | |||||||
10. Every end cut delevery package should be | |||||||
lifted automatically | |||||||
83 | 84 | ||||||
ANALYSIS OF QUALITY PROBLEMS | Nep Generation Mechanical process | ||||||
IN COTTON SPINNING | |||||||
1. Damaged blent beaters and spikes | |||||||
Thick and thin generation :- | 2. Damaged bent clothings | ||||||
1. More short fiber in raw mateerrrial | 3. Poor condition of bushes in combers | ||||||
2. High length variation in raw meterial | 4. Rough damaged of grid bars and cover factures | ||||||
5. Toomaney pipe lines with bending in B/R | |||||||
At Drafting stage :- | 6. Rough and damaged surface of fan blades | ||||||
1. Roller setting of finisher drawing | CLASSIMATE FAULTS | ||||||
2. Draft applied beyond the capacity | |||||||
RAW MATERIAL FAULTS ( A & B ) Type | |||||||
In process stage :- | |||||||
1. Large ammount of trash in cotton | |||||||
1. Quality of carding | 2. More sead fragmentation in cotton | ||||||
2. Quality of combing | 3. Low micronire | ||||||
Nep generation :- | 4. Immaturity of cotton | ||||||
1. Low mic cotton | 5. More short fiber content of cotton | ||||||
2. Variation in moisture content in cotton | |||||||
85 | 86 | ||||||
CLASSIMATE FAULTS ANALYSIS | CLASSIMATE FAULTS ANALYSIS | ||||||
LONG THICK FAULTS :- | |||||||
In process :- | 1. More soft waste in mixing | ||||||
1. Insuffciant nep removal at carding | 2. Excissive short fiber in mixing | ||||||
and combing | 3. Poor control of humidity | ||||||
2. Higher total draft in spinning | 4. Improper peicing of drawing | ||||||
3. Fly and hariness in spinning | 5. Low top roller pressure at drawing | ||||||
4. Improper spacers in spinning | 6. Roller lapping at speed frame | ||||||
7. Lashes of ends at speed frame | |||||||
SLUBS :- | Low top arm pressure in speed frame | ||||||
1. Accumalation of fluff | 8. Low break draft in speed frame | ||||||
2. Improper cleaning of clearer rollers | 9. Too wide spacer in speed frame | ||||||
3. Broken tooth of gear wheels improper | 10. Poor house keeping in spinning | ||||||
messing of wheels | 11. Hard rovong peicing | ||||||
4. Damaged roller covering | 12. Low spinning peicing | ||||||
5. Poor carding due to worn out wire | 13. Low break draft at spinning | ||||||
6. Too wide front zone setting | 14. Low top arm pressure in spinning | ||||||
7. Improper spacer | 15. High hariness in yarn | ||||||
8. Indaquate top arm pressure | |||||||
87 | 88 | ||||||
CLASSIMATE FAULTS ANALYSIS | CLASSIMATE FAULTS ANALYSIS | ||||||
LONG THIN FAULTS :- | LONG THIN FAULTS :- | ||||||
1. More soft waste in spinning | |||||||
2. Mic value range more than 10% in mix | 17. Low Tm at speed frame | ||||||
3. Web falling in carding | 18. Speed frame bobbin variation/Play | ||||||
4. Too low and too high tension draft | 19. More break draft in spinning and simplex | ||||||
5. Chowking of under casing | 20. Wide back zone setting in spinning and spx | ||||||
6. Static charge generation in PV and PC | |||||||
7. Too narrow trumpet carding/drawing | 21. Creel strtetch criss cross in ring frame | ||||||
8. Wraong peicing practices at all stages | |||||||
9. Missing of sliver infective stopmotions | 22. Wide back zone in speed frame and | ||||||
10.Sliver rubbibg at each and inside cans | carding frame | ||||||
11. Distrubunce in creel | 23. Excessive tension weight in winding | ||||||
12. Sliver splittings | |||||||
13. Speed frame stretch | |||||||
14. Flyer leg chouking | |||||||
15. Inlet condnecer chouking | |||||||
16. Improper selection of sliver condencer | |||||||
89 | 90 | ||||||
POSSIBLE CAUSES FOR CLASSIMATE | CLASSIFICATION OF CLASSIMATE | ||||||
FAULTS | FAULTS | ||||||
1. SPACERS - A4 ,B2, C2 | OBJCT. FAULTS | ||||||
2. SPUN IN FLY - B4,C4,C3,D3,D4 | A4 B4 C4 D4 | ||||||
3. CAGE SETTING - B4,C4,C3,D3,D4 | A3 B3 C3 D3 | ||||||
4. FLY & HARINESS - A, B, C. | A2 B2 C2 D2 | ||||||
5. FORGIN MATTER - A3 +A4 | A1 B1 C1 D1 | ||||||
6. FLY AT TRAVELLER - A3,A4 | RAW MWTERIAL FAULTS | ||||||
7. RING FRAME PEICING - C3 ,C4 | A4 B4 C4 D4 | ||||||
8. FLY IN DRAWING - B4,C4,C3,D3,D4 | A3 B3 C3 D3 | ||||||
9. RING FRAME APRONS - B2, C2 | A2 B2 C2 D2 | ||||||
10. SPEED FRAME STRETCH - H1 | A1 B1 C1 D1 | ||||||
11. SPEED FRAME APRONS E | DRAFTING FAULTS | ||||||
12. SPEED FRAME DRAFTING - C3,C4,D2.D3 | A4 B4 C4 D4 | ||||||
D4 | A3 B3 C3 D3 | ||||||
13. MORE TRASH IN MIX - B & C | A2 B2 C2 D2 | ||||||
14. FUSED FIBERS - B3,C2,C3 | A1 B1 C1 D1 | ||||||
REASON WISE ANALYSIS | |||||||
FOR CLASSIMATE FAULTS | |||||||
91 | 92 | ||||||
FOR CLASSIMATE FAULTS | A4 +400% 0.10 TO 1.0 cms | ||||||
1. High ring frame speed | |||||||
A1 +100% 0.10 to 1.0 cms length | 2. Loose fly | ||||||
1. Raw material | 3. High forgion matter | ||||||
2. Low mic | 4. Type of spacers | ||||||
3. Immature fiber | B1 +b100% 1.0 TO 2.0 CMS Length | ||||||
4. Insuffciant nep removal | 1. Raw meterial | ||||||
5. High ring frame speed | 2. High ring frame speed | 2. High ring frame speed | |||||
A2 + 150% 0.10 to 1.0 cms length | B2 +150% 1.0 to 2.0 cms Length | ||||||
1. Raw meterial | 1. High ring frame speed | ||||||
2. Low mic | 2. Loese spun in fly | ||||||
3. Immature fiber | 3. Setting of spacer | ||||||
4. Insuffciant nep removal | 4. Piecing of faults | ||||||
5. High ring frame speed | 5. Cracks in spinning aprons | ||||||
6. Spun in fly | 6. Excissive trash | ||||||
A3 + 250% 0.10 TO 1.0 CMS Length | |||||||
1. Raw material | |||||||
2. High ring frame speed | |||||||
3. Fly at travel | |||||||
4. Spun in fly & Forgion matter | |||||||
REASON WISE ANALYSIS | REASON WISE ANALYSIS | ||||||
FOR CLASSIMATE FAULTS | FOR CLASSIMATE FAULTS | ||||||
B3 +250% 1.0 TO 2.0 CMS Length | |||||||
1. High ring frame speed | C3 +250% 2.0 TO 4.0 Cms | ||||||
2. Loose fly | 1. High ring frame speed | ||||||
3. Spun in fly | 2. Drafting faults | ||||||
4. Piecing faults | 3. Piecing faults | ||||||
B4 +400 % 1.0 TO 2.0 cms Length | 4. Spun in fly | ||||||
1. High ring frame speed | C4 +400% 2.0 TO 4.0 CMS Length | ||||||
2. Loose fly | 1. High ring frame speed | ||||||
3. Spun in fly | 2. Drafting faults | ||||||
4. Long fibers and narrow guage setting | 3. Long fibers & narrow guage setting | ||||||
5. Tight guage setting | 4. loose fly | ||||||
C1 +100% 2.0 TO 4.0 CMS Length | D1 +100% 4.0 to 8.0 cms length | ||||||
1. Excessive trash | 1. Drafting faults | ||||||
2. Drafting faults | D2 +150% 4.0 to 8.0 cms length | ||||||
C2 + 250% 2.0 to 4.0 Cms length | 1. Drafting faults & long piecings | ||||||
1. High ring frame speed | D3 +250% 4.0 TO 8.0 CMS | ||||||
2. Drafting faults | 1. Drafting faults | ||||||
3. Piecing & spun in fly | 2. Long fibers | ||||||
3. Narrow guage length | |||||||
94 | 95 | ||||||
D4 +400% 4.0 TO 8.0 cms length | G +100% 8.0 TO 32.0 cms length | ||||||
1. Drafting faults | 1. Worn out rings in ring frame | ||||||
2. Long fibers | 2. Incorrect setting and more breakeges | ||||||
3. Narrow guage length | in draframe | ||||||
4. Tight guage settings | 3. Very high hariness | ||||||
4. Improper mentinence of spinning machines | |||||||
E +100% 4.0 TO 8.0 CMS Length | 5. Poor air conditioning control humidity | ||||||
1. Incorrect setting at draw frame | and air return | ||||||
2. More piecings at drawings | H1 -30% 8.0 TO 32.0 cms length | ||||||
F +45% 4.0 to 8.0 cms | 1. Stretch of roving at speed frame | ||||||
1. Worn out rings in ring spinning | 2. Draframe settings and mentinence | ||||||
2. Inncorrect setting and more | 3. High brekege at drawing and speed | ||||||
sliver breaks in speed frame | H2 - 45% 8.0 TO 32.0 cms | ||||||
3. Very high hariness | 1. Sliver splittings at speed frame | ||||||
4. Improper mentinence of spinning | 2. Creel stretch at ring frame | ||||||
5. Poor house keeping | 3. Settings and speed in R/F and speed | ||||||
6. Poor conditioning humidity | I1 & I2 ( - 45% 32 cms - 70% 32 cms above ) | ||||||
and return air | High drafting whaves | ||||||
Seperation of meterial | |||||||
CV% CONTROL IN PREPARATORY | |||||||
PROCESS | CONTROLLING OF COUNT CV% IN PREP | ||||||
Comber :- | |||||||
Use 26 mm detaching rollers | 6 | Avoid back bottom roller lappings | |||||
Drawing : When ever lapping occures | 7. Check correct size of condencers no. of | ||||||
remove sliver from the can | foldings | ||||||
CAN :- 1. Can content must be optimum | 8. Use lesser break draft/ less cv% correct nose | ||||||
2. Coiling must be proper | bar setting | ||||||
3. Gap between sliver and can | 9. Trail with close bottom roller setting in | ||||||
ptimum to avoid damage sliver | cotton optimum spacer | ||||||
Speed frame :- | 10. Stretch at speed frame should be less | ||||||
1. Variation in top ar load should be | check stretch at intial 1/4th 1/2 and full | ||||||
minimum | 11. Adjest shifting of belt / ratchet movement | ||||||
2. Check round as both sides of | |||||||
top rollers adjest evenly by tilting | 12. Leave spindle idle in case of more breaks | ||||||
the saddel | |||||||
3. Check traverse for sliver run through | 13. Avoid sliver splittings at creel and delevery | ||||||
center cots and aprons | |||||||
4. Use low tension cradel springs to | 14. Maintian same creel draft in all draw frames | ||||||
avoid lesser load on front top | |||||||
rolleer | 15. Crsiis crossing of sliver movement to be avoid | ||||||
CV% CONTROL IN RING SPINNING | ADOPTION MESURES TO CONTROL | ||||||
1. Bobbin holder rotation should be | COUNT CV% IN PROCESS | ||||||
proper | Mixing :- | ||||||
2. Criss crossing of roving should be | 1. Adopt bale management tequnic | ||||||
avoid | 2. Bale openeing done properly in such a way | ||||||
3.Creel high must be optimum -3 to bobbin | then tuft shouls be as less as possible 25 to 50 | ||||||
from top arm | 3. Limit no. of bales to 10/ Mixing | ||||||
4. Group cv% must be checked | 4. Lay sandwitch mixing by drawing correspon | ||||||
5. Check for the balloning at ring frame to | ding ammount from each bale | ||||||
avoid clashing with seperator | 5. Allow the mixing from 24 hrs conditioning | ||||||
6. Check proper filment of ring frame tube | for regain moisture | ||||||
7. Roving path should not touch bobbin | 6. 2.5% span length variation between lots should | ||||||
8. Winding length should be max possible | be below 0.5 mm the av3erage | ||||||
7. Weighted average of mic value should not be | |||||||
9. Trail with different top roller setting and | more than 8% | ||||||
spacer | 8. Uneven mixing of soft waste and more soft | ||||||
10. Required same draft wheels for all ring | waste adding | ||||||
frames for one count | 9. Maintain right RH% in all departments | ||||||
ensure that humidifications correction factore | |||||||
is taken care while correcting hank in machine | |||||||
ADOPTION MESURES TO CONTROL | ADOPTION MESURES TO CONTROL COUNT | ||||||
COUNT CV% IN PROCESS | CV% IN PROCESS | ||||||
Blow room :- | Drawing :- | ||||||
1. Variation in tufft size is an important | 1. Maintain suffciant gap between the coils in | ||||||
facture influence between bobbin | delevery can to avoid pealing | ||||||
variation. | 2. Maintain the can contant as per recomanda | ||||||
2. Irregualr air flow in blow room condencer | tions 18" can dia should 14 to 16 kgs only | ||||||
area | to avoid over filling | ||||||
3. Improper openeing and improper beater | 3. Avoid sliver distrubunce due to improper | ||||||
speeds | handling | ||||||
4. Improper shyncranisation | 5. Life of the spring and ensure that the sliver | ||||||
5. Faulty air currents | coils has to come up due to spring pressure | ||||||
6.Dirty condencer screen with rough | while unwinding at next process | ||||||
serface | 6. Use minimum web tension draft | ||||||
Carding :- | 7. Ensure that the loading variations on top | ||||||
1. Ensure card sliver hank variation are not | roller to minimum possible extent | ||||||
more than +/- 3.0% | 8. Ensure that all the top rollers are the same | ||||||
2. Ensure that meter to meter variation in | diameter | ||||||
card sliver should be < 3.5% | 9. Ensure that A% and 1 meter cv% are under | ||||||
control | |||||||
102 | 103 | ||||||
Drawing : | ADOPTION MESURES TO CONTROL COUNT CV% | ||||||
Ensure that correct size of feed and | IN PROCESS - SIMPLEX | ||||||
and delevery condencers are running | |||||||
in the machine for the same count | 1. Ensure that the correct size of delevery and | ||||||
11. Draframe sliver U% a direct influance | feed condencers and also same process | ||||||
on the count cv% as well as fabric | 2. Worn out chouwking condencers to be | ||||||
appearance | replaced | ||||||
12 | Hank to be confirmed in the autolevelers | 3. Sliver in creel should not be criss/ cross | |||||
off positiojn once in a week for | 4. Can spring condition can top edge damage | ||||||
all draframes | coiling in cans should not touch cans inner | ||||||
13. Normally hank correction to be carried | edge to avoid peeling off | ||||||
out +/- 1.0 % | 5. Damage false twister | ||||||
14. With short staple cotton 2 passages | 6. Ensure minimum diffrence in between front | ||||||
of post combing drawing will reduce | and back row | ||||||
the count cv% significaantly | 7. Check 5 meters 30 samples for roving cv% | ||||||
15. Ensure group feeding at all placess | once in a week cv for corser hank 0.7 and | ||||||
for better control on aaand better | finer haank 1.0 | ||||||
quick tracability of deviations | 8. Ensure that same number of turns on | ||||||
all spindles ensure that there is no choking in | |||||||
the flyers inside portion use horn for cleaning | |||||||
104 | 105 | ||||||
Simplex :- | ADOPTION MESURES TO CONTROL CV% | ||||||
corrct wi nding on wheel ( L.W) | 1. Variation in RF Draft in between frames | ||||||
incorrect winding on wheel is more | 2. Slippage of top rollers and aprons indauate | ||||||
determental to count cv% in correct | weighting improper grip groved formation | ||||||
ratching wheel | 3. Stretch of meterial in creel lesser roving TM | ||||||
( No. of coils/ cm = 5.0/ Hank) | Bobbin holder struck up and more creel hight | ||||||
4. Higher frequancy of cots buffing and high | |||||||
Preferbly wind the bobbin rail up or down | starting dia will helpful to reduce count cv% | ||||||
to start with a full layer to avoid ratching | 5. Toparm loading variation Due to worn out | ||||||
in the intial layer | springs air leakege improper seating of cradel | ||||||
Ensure that creel drive is smooth | 6. Mis alignment of creel roving bobbin criss - cross | ||||||
roving | |||||||
Attention should be given to clearer waste | 7. Creel guide rod position inrelation to the bobbin | ||||||
problem process wise mc wise spdl wise | and count ( if located too high or too low stretch | ||||||
delevery wise | taken when roving un winds from top most bottom | ||||||
most portion of roving bobbin | |||||||
Attention should be given to groved aprons | 8. Ensure that roving does not touch other bobbin | ||||||
groved cots which causes slippage | in ring frame creel | ||||||
106 | 107 | ||||||
GENERAL CONSEPT OF COUNT CV% | REDUCING RING FRAME BREAKEGES | ||||||
Higher cv especially of medium to long | If brekege rate is more from 0 to 1/4 th stage | ||||||
length range results in moire like appearance | the following precotions to be taken | ||||||
in fabric and increase warp way steaks and | 1. Reduce the speed pattren at intial stage | ||||||
weft bars | 2. Check the ballon formation when the ballon | ||||||
More clearance between ring dia and full | touch the seperator create a breakage | ||||||
package | at lappet eye ank make multiple breakes | ||||||
cv% of half lea will be 1.2 to 1.3 times more | 3. Bottom cop built change cercular shape | ||||||
than cv% of full lea | to "V" Shape | ||||||
Wraping of cv of wraping may be on 5 yards | 4. Use heavy traveller to control baloon formation | ||||||
instead of 15 yards at simplex | 5. Change the traveller profile | ||||||
at drawing cv of wrapping based on 0.5 yard | 6. Observe the traveller loading means fluff | ||||||
length will be more useful | at travellers | ||||||
Total yarn coung variation is contributes by | 7. Change the traveller clearer setting 1.8 mm | ||||||
65% between bobbin variation and 35% | 8. Lappet hole dia should be 1.5 mm to 1.8 mm | ||||||
within bobbin variation | 9. Select suitable flange and traveller profile | ||||||
10. Use ring lope oil in ring spinning | |||||||
under good working condition blow room | 11. Slect propler hase length D to d = 2:1 | ||||||
and carding accounts for 14% draw frame | |||||||
108 | 109 | ||||||
REDUCING RING FRAME BREAKEGE | REDUCING RING FRAME BREAKEGE | ||||||
1. The ring traveller together with the | |||||||
yarn as a pull element is set into | 1. The tube length determains (with the yarn | ||||||
motion on the ring by the rotation of the | guide the maximum ballon length this is an | ||||||
spindle | important facture for the performance of ring | ||||||
2. If the direction of pull deviates too much | spinning machine. | ||||||
from the running direction of the | 2. Shorter the ballon higher traveller speed | ||||||
traveller (alpha less than 30 deg) the | can achive | ||||||
tension load will be too high | 3. spindle rotation without vibrations and | ||||||
3. The pulling tension can be reduced | correct consist of bobbin tube | ||||||
by adopting the ring or tube dia | |||||||
4. During winding upon the tube after | 4. Ring with exact roundness and firm seating | ||||||
doffing resp. at the top of the conical | in horizental position | ||||||
part of the bobbin | 5. Correct seating of the traveller clearer space | ||||||
5. Ratio of tube length to ring diameter | should be 0.2 to 0.3 mm | ||||||
ideal ratio 5 :1 | 6. Rtecomanded flange width | ||||||
6. Lappet hight 2d +5 of tube dia for lappet | 1/2 flange 2.6 mm | ||||||
setting | Singel flange 3.2 mm | ||||||
Double flange 4.0 mm | |||||||
110 | 111 | ||||||
REDUCING RING FRAME BREAKEGES | BLEND TEST PROCEDURE | ||||||
Binarey mixtures of regenerated cellulosic | |||||||
and cotton mix | |||||||
1. When the ring diameter is less ballon | 1. Ammonia ( Dilute solutions ) | ||||||
diameter will be small this leds to more | 20 ml concentrated Ammonium hydroxide | ||||||
yarn tension hence use lighter traveller | specific gravity % 0.88 made up to 1 leter | ||||||
of water | |||||||
2. When the ring diameter is high ballon | 2. Concentrated solfuric acid = 60% +b wa | 2. Concentrated solfiric acid | |||||
diameter will be more this leads to less yarn | 60% H2SO4 +40 % WATER | ||||||
tension and ballon touches the seperator | |||||||
hence uyse heavier traveller | 3. Tools two glas flasks and one mechanical | ||||||
rod. | |||||||
3. When the tube length is long the yarn | Procedure :- | ||||||
tension will be less hence use hevier | |||||||
traveller | 1. Take test specimen about one or two grams | 1. Take test specimen one or two grams or lea | |||||
2. Then dry the specimen at 105 Deg c in oven | |||||||
4. When the yarn contact area and ring contact | 3. Trancefor the specimen to a glass flask at | ||||||
area in traveller is closer fiber lubrication is | room temparature | ||||||
better especially in cotton hence use | |||||||
hevar traveller | |||||||
112 | |||||||
BLEND TEST PROCEDURE | 113 | ||||||
BLEND TEST PROCEDURE | BLEND TEST PROCEDURE | ||||||
4. Apply the saluation 60% sulfuric | PERCENTAGE OF COTTN = | ||||||
40% water at 27 De c | |||||||
5. Shake thoughly preferby with a | 100 X Mr x d / MS | ||||||
mechanical rod for 30 min | |||||||
6. And then trancefor the specimen | Mr = Specimen weight after dessolve | ||||||
to another glass | d = Correction factore ( 1.05) | ||||||
7. Then use again apply the saluation | MS = Weight of the specimen bofore | ||||||
with few minutes wash the specimen | dessolve | ||||||
with the salfuric acid saluation | |||||||
8. Then wash the specimen with | Then you an know the percentage of | ||||||
dilute ammonia saluation | cellulosic re- generated fiber | ||||||
( Ammonium hydroxide ) | |||||||
9. Then wash the specimen with water | Report :- The report shell include the following | ||||||
twice | information | ||||||
10. Dry the specimen with 105 De c | A = Type of meterial B = % of re generated fiber | ||||||
Temparature | C = Cotton | ||||||
114 | 115 | ||||||
SOME BLEND TEST SOLVI NG | P.V. BLEND TEST PROCEDURE | ||||||
AGENTS | |||||||
1. Water 30 ml +H2SO4 40 ML | |||||||
100 % Polyester dissolved in final | |||||||
Reduce the sulution temparature 45 Deg C | |||||||
100% vsf Dissolved in H2SO4 | |||||||
Kept the specimen in the sulution | |||||||
Wool 95% water +5% costic soda | |||||||
Heat the soulation | Kept 30 Min idle condition | ||||||
PV = H2SO4 + WATER | |||||||
Wash the specimen with hot water | |||||||
Acrylic : Dyemethal formide | Dry the specimen | ||||||
Weight the specimen | |||||||
After weight/ Before weight x 100 | |||||||
100 - Value = Blend % ( Viscose dessolved) | |||||||
116 | 117 | ||||||
YARN FAULTS GENERATED IN | TYPES OF FAULTS GENERATED IN SPINNING | ||||||
RING SPINNING | Spun - in - fly :- S1 | ||||||
DIAGRAM | This referse to free fibers which fall into the | ||||||
drafting elements or into the roving beaing fed into | |||||||
the drafting unit and are then twisted into the yarn | |||||||
along their entire unit | |||||||
Loosese fly :- S2 | |||||||
This refers to fibers which are collected by the | |||||||
yarn at a position after the front roller and in most | |||||||
cases are only spun in out one end | |||||||
Longe collection of fly :- S3 | |||||||
These are matted fibers which collect together on | |||||||
apron or rollrs and form time to time are collected | |||||||
and carried along by the yarn | |||||||
118 | 119 | ||||||
YARN FAULTS AT SPINNING | YARN FAULTS AT SPINNING | ||||||
Crakers :_ ( S7) | |||||||
Fishes ( Corkscrew ) :- S4 | These results due to extra long fibers | ||||||
These faults results to due to static charging | which distrubute the drafting process and | ||||||
or a result of un suitable drafting or drafting | for short instant of time stop the passage of | ||||||
aprons which have craked surface | yarn. | ||||||
Pushed together of fibers :- ( S5) | PIECINGS ( P1 ) | ||||||
These are faults resulting from held back | As with the short staple materiales these | ||||||
fibers and occure primery at the ring | faults are normally produced in the process | ||||||
traveller | prior to spinning | ||||||
Chains of faults :- ( S6) | LONG SLUBS (P2) :- | ||||||
These are combination of the faults S1 S2 | |||||||
Possibely also S3 which occure in short | This referse to premearly short fibers or haires | ||||||
sucession one after the other along the | which hold together as a single unit and appear | ||||||
length of the yarn | IN | the yarn as untwisted placess | |||||
120 | 121 | ||||||
TIPS FOR RING TO TUBE RELATIONS | HOW TO REDUCE BREAKEGE RATE IN RING | ||||||
SPINNING AT THE STAGE OF 0 - 1/4 Th | |||||||
1. Reduce the speed patterning at initial stage | |||||||
Lappet setting = 2d + 5 mm | 2. Check the ballon formation when the ballon touch | ||||||
the seperator break at lappet eye and make | |||||||
2d = Tube top dia ( Bobbin) | multyple breaks | ||||||
Ring dia to tube dia = | 3. Bottom cop built change cercular shape to | ||||||
2 : 1 mm = | "V" shape | ||||||
Ex ring dia = 36 mm Tube top = 18 | 4. Use heavy traveller to control ballon formation | ||||||
Ratio = 2 : 1 mm | 5. Change the traveller profile | ||||||
Ring dia to tube length = 1 : 5 mm | 6. Observe the traveller loading mean fluff at | ||||||
traveller | |||||||
Ex ring dia 36 mm Tube length = 180 | 7. Change the traveller clearer setting 1.8 mm | ||||||
8. Select suitable flange and traveller profile | |||||||
Chase length = | 9. Use ring lope oil in ring spinning | ||||||
10.Select the proper chase length | |||||||
Ring dia + 5 mm or 10% of ring dia | 11. The ring traveller together with the yarn | ||||||
as a pull element is set into motion on the ring | |||||||
122 | 123 | ||||||
REDUCING BREAKEGE RATE IN SPINNING | HOW TO REDUCE BREAKEGE RATE | ||||||
By the rotation of the spindle | IN RING SPINNING @ 1/4 Th stage | ||||||
If the directin of pull deviates too much | |||||||
from the running direction of the traveller | The tube length determains ( With the yarn guide) | ||||||
( Alpha less than 30 Deg ) the tension load | The maximum ballon length this is an important | ||||||
will be too high. | factore for the performance of ring spinning | ||||||
machine | |||||||
The pulling tension can be reduced by | |||||||
Adopting the ring or tube diameter | 14. Shorter the ballon higher traveller speed can | ||||||
achive | |||||||
( Alpha greater than 30 Deg during the winding | 15. Spindle rotation without vibration and correct | ||||||
upon the table after doffing resp. At the top | connectivity of bobbin tube | ||||||
of the conical port of the bobbin | 16. Ring with exact roundness and firm seating | ||||||
in horizental position | |||||||
Ratio of the tube length to ring diameter | 17. Correct seating of the traveller clearer space | ||||||
should be 0.20 t0 0.3 mm | |||||||
124 | 125 | ||||||
HOW TO REDUCE BREAKEGE RATE | 18.0 1/2 Flange = 2.6 mm | ||||||
IN RING SPINNING @ 1/4 Th stage | Single flange = 3.2 mm | ||||||
ring by the rotation of the spindle if the direction | Double flange = 4.0 mm | ||||||
of pull deviates too much from the running | |||||||
direction of the traveller ( alpha less than 30 | When the ring diameter is less ballon diameter | ||||||
degree) the tension load will be too high | will be small . This leads to more yarn tenson | ||||||
Hence use lighter traveller | |||||||
The pulling tension can be reduced by | |||||||
adopting the ring or the diameter | When the tube length is long the yarn tenson | ||||||
During winding upon the tube after doffing | will be less hence use havier travellers | ||||||
resp at the top of the conical part of the | |||||||
bobbin. | When the yarn contact area and the ring | ||||||
12. Ratio between tube length to ring diameter | contact area in traveller is close fiber lubrication | ||||||
Ideal ratio = 5 :1 | is better especially in cotton hence use heavear | ||||||
13. Lappet hight 2d +5 mm of tube dia for lappet | Traveller | ||||||
setting | |||||||
Traveller speed should be 35 to 40 mts/Sec | |||||||
GENERAL FOURMULAS | |||||||
126 | 127 | ||||||
1. Builder motion : | 6. Cotton yarn content in cop = | ||||||
New ratchet = present ratchet wheel | 3.25x L X D2 = L = SPDL LIFT D = RING DIA | ||||||
x sqr of present HK/ New hk | 7. Roving contnent in kgs = ( 3 x L X D2)/1000 | ||||||
8. Sliver content in kgs ( for different can size) | |||||||
2. Twist change wheel : | = 1.5 x Height x Diameter 2 | ||||||
New change wheel = Present wheel x | 9. HOK = | ||||||
( sqr of present Nec /New Nec ) x Present | ( Operative hours/ Total of the standardized | ||||||
TM/ New TM | ring spinning production in indivedual counts x 100) | ||||||
3. Yarn tension weight = 0.571 x lea strength | OHS = | ||||||
in kgs +1.8 | ( HOK adjested to 40s x Production/ spindle | ||||||
4. Open end spinning TPM = | adjested to 40s )/800 | ||||||
Delevery speed in mts/ min x tex x 60 | 10. Relation between twist Multiplier for maximum | ||||||
x eff% / 1000 | strength | ||||||
= (Rotor rpm x tex x eff x 60) / 1000 x tpm | T max = ( 50 - L + f )/9 | ||||||
T max = Tm for maxximum strength | |||||||
L = 50% SPAN LENGTH f = Mic value | |||||||
GENERAL FOURMULAS | 2 | ||||||
128 | 129 | ||||||
11. Fiber bundle strength = | |||||||
( Breaking load in kgs x 15)/ sample | |||||||
weight in milligrams | |||||||
Breaking elongation% = | |||||||
( Length at breaking load - Nominal guage | |||||||
length )/Nominal guage length x 80 | |||||||
The pressely index ( P.I) | |||||||
( Breaking load in pounds/ Bundle weight | |||||||
in milligrams ) | |||||||
12. Effictive length bear sorter = | |||||||
1.013 x 2.5% span length | |||||||
13.Mean length = 1.242 x 50% SL + 9.78 | |||||||
Saturday, August 24, 2019
handbook of textile calculations and stastical formulaes
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment